Exploring and Visualizing Research Progress and Emerging Trends of Event Prediction: A Survey
<p>The overall framework of analyzing relevant event prediction research in a scientometric way.</p> "> Figure 2
<p>The number of publications on “event prediction” for the years 2012–2022.</p> "> Figure 3
<p>The distribution of the literature types for the years 2012–2022.</p> "> Figure 4
<p>The distribution of the number of documents related to each event type.</p> "> Figure 5
<p>The author’s co-citation network for the years 2012–2022.</p> "> Figure 6
<p>The clusters in the author co-citation network for the years 2012 to 2022.</p> "> Figure 7
<p>The document co-citation network for the years 2012–2022.</p> "> Figure 8
<p>The clusters in the document co-citation network for the years 2012 to 2022.</p> "> Figure 9
<p>The collaborative institution network for the years 2012–2022.</p> "> Figure 10
<p>The citation burst history of the institutions in the timespan of 2012–2022.</p> "> Figure 11
<p>The keyword co-occurrence network for years 2012 to 2022.</p> "> Figure 12
<p>The keyword timeline graph for the years 2012–2022.</p> ">
Abstract
:1. Introduction
2. Background Knowledge
2.1. Planned Event Prediction
2.2. Recurring Event Prediction
2.3. Spontaneous Event Prediction
2.4. Black Swan Events
3. Methodology
3.1. Data Collection
3.2. Scientometric and Visual Analysis Using CiteSpace
4. Results and Discussion
4.1. An Overall View of the Types of the Predicted Events
4.2. Author Co-Citation Network Analysis
4.3. Document Co-Citation Network Analysis
4.4. Collaborative Institution Network Analysis
4.5. Keyword Co-Occurrence Network Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bates, P.D. Flood inundation prediction. Annu. Rev. Fluid Mech. 2022, 54, 287–315. [Google Scholar] [CrossRef]
- Huang, D.; Wang, S.; Liu, Z. A systematic review of prediction methods for emergency management. Int. J. Disaster Risk Reduct. 2021, 62, 102412. [Google Scholar] [CrossRef]
- Neu, D.A.; Lahann, J.; Fettke, P. A systematic literature review on state-of-the-art deep learning methods for process prediction. Artif. Intell. Rev. 2022, 55, 801–827. [Google Scholar] [CrossRef]
- Zhao, L. Event prediction in the big data era: A systematic survey. ACM Comput. Surv. (CSUR) 2021, 54, 1–37. [Google Scholar] [CrossRef]
- Shyalika, C.; Wickramarachchi, R.; Sheth, A. A Comprehensive Survey on Rare Event Prediction. arXiv 2023, arXiv:2309.11356. [Google Scholar]
- Alcántara Francia, O.A.; Nunez-del-Prado, M.; Alatrista-Salas, H. Survey of text mining techniques applied to Judicial decisions prediction. Appl. Sci. 2022, 12, 10200. [Google Scholar] [CrossRef]
- Kashpruk, N.; Piskor-Ignatowicz, C.; Baranowski, J. Time Series Prediction in Industry 4.0: A Comprehensive Review and Prospects for Future Advancements. Appl. Sci. 2023, 13, 12374. [Google Scholar] [CrossRef]
- Wallin, J.A. Bibliometric methods: Pitfalls and possibilities. Basic Clin. Pharmacol. Toxicol. 2005, 97, 261–275. [Google Scholar] [CrossRef]
- Chen, C. The citespace manual. Coll. Comput. Inform. 2014, 1, 1–84. [Google Scholar]
- Muthiah, S.; Butler, P.; Khandpur, R.P.; Saraf, P.; Self, N.; Rozovskaya, A.; Zhao, L.; Cadena, J.; Lu, C.-T.; Vullikanti, A. EMBERS at 4 years: Experiences operating an open source indicators forecasting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 205–214. [Google Scholar]
- Muthiah, S. Forecasting Protests by Detecting Future Time Mentions in News and Social Media. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2014. [Google Scholar]
- Muthiah, S.; Huang, B.; Arredondo, J.; Mares, D.; Getoor, L.; Katz, G.; Ramakrishnan, N. Planned protest modeling in news and social media. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; pp. 3920–3927. [Google Scholar]
- Ramakrishnan, N.; Butler, P.; Muthiah, S.; Self, N.; Khandpur, R.; Saraf, P.; Wang, W.; Cadena, J.; Vullikanti, A.; Korkmaz, G. ‘Beating the news’ with EMBERS: Forecasting civil unrest using open source indicators. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 1799–1808. [Google Scholar]
- Basnet, S.; Soh, L.-K.; Samal, A.; Joshi, D. Analysis of multifactorial social unrest events with spatio-temporal k-dimensional tree-based dbscan. In Proceedings of the 2nd ACM SIGSPATIAL Workshop on Analytics for Local Events and News, Seattle, WA, USA, 6 November 2018; pp. 1–10. [Google Scholar]
- Iyda, J.J.; Geetha, P. An improved deep belief neural network based civil unrest event forecasting in twitter. Appl. Intell. 2023, 53, 5714–5731. [Google Scholar] [CrossRef]
- Timoneda, J.C.; Wibbels, E. Spikes and variance: Using Google Trends to detect and forecast protests. Political Anal. 2022, 30, 1–18. [Google Scholar] [CrossRef]
- Lawson, F.H. Repertoires of contention in contemporary Bahrain. In Islamic Activism: A Social Movement Theory Approach; Indiana University Press: Bloomington, IN, USA, 2004; pp. 89–111. [Google Scholar]
- Laxman, S.; Tankasali, V.; White, R.W. Stream prediction using a generative model based on frequent episodes in event sequences. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2008; pp. 453–461. [Google Scholar]
- Rong, H.; Teixeira, A.; Soares, C.G. Maritime traffic probabilistic prediction based on ship motion pattern extraction. Reliab. Eng. Syst. Saf. 2022, 217, 108061. [Google Scholar] [CrossRef]
- Laxman, S.; Sastry, P.; Unnikrishnan, K. Discovering frequent generalized episodes when events persist for different durations. IEEE Trans. Knowl. Data Eng. 2007, 19, 1188–1201. [Google Scholar] [CrossRef]
- Zhou, C.; Cule, B.; Goethals, B. A pattern based predictor for event streams. Expert Syst. Appl. 2015, 42, 9294–9306. [Google Scholar] [CrossRef]
- Yonamine, J.E. Predicting Future Levels of Violence in Afghanistan Districts Using Gdelt. Unpubl. Manuscr. 2013. Available online: http://data.gdeltproject.org/documentation/Predicting-Future-Levels-of-Violence-in-Afghanistan-Districts-using-GDELT.pdf (accessed on 15 December 2023).
- Petroff, V.B.; Bond, J.H.; Bond, D.H.; Bond, D.H. Using hidden Markov models to predict terror before it hits (again). In Handbook of Computational Approaches to Counterterrorism; Springer: New York, NY, USA, 2013; pp. 163–180. [Google Scholar]
- Salfner, F.; Lenk, M.; Malek, M. A survey of online failure prediction methods. ACM Comput. Surv. (CSUR) 2010, 42, 1–42. [Google Scholar] [CrossRef]
- Carbo-Bustinza, N.; Iftikhar, H.; Belmonte, M.; Cabello-Torres, R.J.; De La Cruz, A.R.H.; López-Gonzales, J.L. Short-Term Forecasting of Ozone Concentration in Metropolitan Lima Using Hybrid Combinations of Time Series Models. Appl. Sci. 2023, 13, 10514. [Google Scholar] [CrossRef]
- Ballı, S. Data analysis of COVID-19 pandemic and short-term cumulative case forecasting using machine learning time series methods. Chaos Solitons Fractals 2021, 142, 110512. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, B.; Alim, A.; Zhao, L. A generic framework for interesting subspace cluster detection in multi-attributed networks. In Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 41–50. [Google Scholar]
- Chen, M.; Yu, X.; Liu, Y. PCNN: Deep convolutional networks for short-term traffic congestion prediction. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3550–3559. [Google Scholar] [CrossRef]
- Cheon, S.-P.; Kim, S.; Lee, S.-Y.; Lee, C.-B. Bayesian networks based rare event prediction with sensor data. Knowl.-Based Syst. 2009, 22, 336–343. [Google Scholar] [CrossRef]
- Cho, C.-W.; Zheng, Y.; Wu, Y.-H.; Chen, A.L. A tree-based approach for event prediction using episode rules over event streams. In Proceedings of the Database and Expert Systems Applications: 19th International Conference, DEXA 2008, Turin, Italy, 1–5 September 2008; Proceedings 19. pp. 225–240. [Google Scholar]
- Choi, Y.; Choi, M.; Kim, M.; Ha, J.-W.; Kim, S.; Choo, J. Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 8789–8797. [Google Scholar]
- Korkmaz, G.; Cadena, J.; Kuhlman, C.J.; Marathe, A.; Vullikanti, A.; Ramakrishnan, N. Combining heterogeneous data sources for civil unrest forecasting. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, Paris, France, 25–28August 2015; pp. 258–265. [Google Scholar]
- Zhao, L.; Gkountouna, O.; Pfoser, D. Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Trans. Spat. Algorithms Syst. (TSAS) 2019, 5, 1–28. [Google Scholar] [CrossRef]
- Tama, B.A.; Comuzzi, M. An empirical comparison of classification techniques for next event prediction using business process event logs. Expert Syst. Appl. 2019, 129, 233–245. [Google Scholar] [CrossRef]
- Xu, S.; Li, S.; Huang, W. A spatial-temporal-semantic approach for detecting local events using geo-social media data. Trans. GIS 2020, 24, 142–173. [Google Scholar] [CrossRef]
- Kattan, A.; Fatima, S.; Arif, M. Time-series event-based prediction: An unsupervised learning framework based on genetic programming. Inf. Sci. 2015, 301, 99–123. [Google Scholar] [CrossRef]
- Chen, F.; Neill, D.B. Non-parametric scan statistics for event detection and forecasting in heterogeneous social media graphs. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 1166–1175. [Google Scholar]
- Xu, S.; Li, S.; Huang, W.; Wen, R. Detecting spatiotemporal traffic events using geosocial media data. Comput. Environ. Urban Syst. 2022, 94, 101797. [Google Scholar] [CrossRef]
- Duan, H.; Sun, Z.; Dong, W.; He, K.; Huang, Z. On clinical event prediction in patient treatment trajectory using longitudinal electronic health records. IEEE J. Biomed. Health Inform. 2019, 24, 2053–2063. [Google Scholar] [CrossRef] [PubMed]
- Eria, K.; Marikannan, B.P. Systematic review of customer churn prediction in the telecom sector. J. Appl. Technol. Innov. 2018, 2, 7–14. [Google Scholar]
- Fellbaum, C. WordNet. In Theory and Applications of Ontology: Computer Applications; Springer: Berlin/Heidelberg, Germany, 2010; pp. 231–243. [Google Scholar]
- Field, C.B. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Flouris, I.; Giatrakos, N.; Deligiannakis, A.; Garofalakis, M.; Kamp, M.; Mock, M. Issues in complex event processing: Status and prospects in the big data era. J. Syst. Softw. 2017, 127, 217–236. [Google Scholar] [CrossRef]
- Chimmula, V.K.R.; Zhang, L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solitons Fractals 2020, 135, 109864. [Google Scholar] [CrossRef]
- Kapoor, A.; Ben, X.; Liu, L.; Perozzi, B.; Barnes, M.; Blais, M.; O’Banion, S. Examining COVID-19 forecasting using spatio-temporal graph neural networks. arXiv 2020, arXiv:2007.03113. [Google Scholar]
- Deng, S.; Rangwala, H.; Ning, Y. Dynamic knowledge graph based multi-event forecasting. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 23–27 August 2020; pp. 1585–1595. [Google Scholar]
- Kang, W.; Chen, J.; Li, J.; Liu, J.; Liu, L.; Osborne, G.; Lothian, N.; Cooper, B.; Moschou, T.; Neale, G. Carbon: Forecasting civil unrest events by monitoring news and social media. In Proceedings of the Advanced Data Mining and Applications: 13th International Conference, ADMA 2017, Singapore, 5–6 November 2017; Proceedings 13. pp. 859–865. [Google Scholar]
- Wang, D.; Ding, W.; Yu, K.; Wu, X.; Chen, P.; Small, D.L.; Islam, S. Towards long-lead forecasting of extreme flood events: A data mining framework for precipitation cluster precursors identification. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; pp. 1285–1293. [Google Scholar]
- Mirtaheri, M.; Abu-El-Haija, S.; Hossain, T.; Morstatter, F.; Galstyan, A. Tensor-based Method for Temporal Geopolitical Event Forecasting. In Proceedings of the ICML Workshop on Learning and Reasoning with Graph-Structured Representations, Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Rostami, M.; Huber, D.; Lu, T.-C. A crowdsourcing triage algorithm for geopolitical event forecasting. In Proceedings of the 12th ACM Conference on Recommender Systems, New York, NY, USA, 6 October 2018; pp. 377–381. [Google Scholar]
- Li, E.Y.; Tung, C.-Y.; Chang, S.-H. The wisdom of crowds in action: Forecasting epidemic diseases with a web-based prediction market system. Int. J. Med. Inform. 2016, 92, 35–43. [Google Scholar] [CrossRef]
- Taleb, N.N. The Black Swan: The Impact of the Highly Improbable; Random House: New York, NY, USA, 2007; Volume 2. [Google Scholar]
- Runde, J. Dissecting the black swan. Crit. Rev. 2009, 21, 491–505. [Google Scholar] [CrossRef]
- Aven, T. On the meaning of a black swan in a risk context. Saf. Sci. 2013, 57, 44–51. [Google Scholar] [CrossRef]
- Flage, R.; Aven, T. Emerging risk–Conceptual definition and a relation to black swan type of events. Reliab. Eng. Syst. Saf. 2015, 144, 61–67. [Google Scholar] [CrossRef]
- Marsh, T.; Pfleiderer, P. “Black Swans” and the financial crisis. Rev. Pac. Basin Financ. Mark. Policies 2012, 15, 1250008. [Google Scholar] [CrossRef]
- Hanes, E.; Machin, S. Hate crime in the wake of terror attacks: Evidence from 7/7 and 9/11. J. Contemp. Crim. Justice 2014, 30, 247–267. [Google Scholar] [CrossRef]
- Antipova, T. Coronavirus pandemic as black swan event. In Proceedings of the International Conference on Integrated Science, Online, 1–2 May 2020; pp. 356–366. [Google Scholar]
- Clarke, B.J.; Otto, F.E.; Jones, R.G. Inventories of extreme weather events and impacts: Implications for loss and damage from and adaptation to climate extremes. Clim. Risk Manag. 2021, 32, 100285. [Google Scholar] [CrossRef]
- Hajikazemi, S.; Ekambaram, A.; Andersen, B.; Zidane, Y.J. The Black Swan–Knowing the unknown in projects. Procedia-Soc. Behav. Sci. 2016, 226, 184–192. [Google Scholar] [CrossRef]
- Bedi, J.; Toshniwal, D. CitEnergy: A BERT based model to analyse Citizens’ Energy-Tweets. Sustain. Cities Soc. 2022, 80, 103706. [Google Scholar] [CrossRef]
- Goldman, S.A. Limitations and strengths of spontaneous reports data. Clin. Ther. 1998, 20, C40–C44. [Google Scholar] [CrossRef]
- Ismail, H.O. Simultaneous Events and the” Once-Only” Effect. Front. Artif. Intell. Appl. 2006, 150, 143. [Google Scholar]
- Romero, S.; Becker, K. A framework for event classification in tweets based on hybrid semantic enrichment. Expert Syst. Appl. 2019, 118, 522–538. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, J.P.; Dwivedi, Y.K.; Rana, N.P. A deep multi-modal neural network for informative Twitter content classification during emergencies. Ann. Oper. Res. 2020, 319, 791–822. [Google Scholar] [CrossRef]
- Li, J.; Chen, C. Citespace: Scientific Text Mining and Visualization; Capital University of Economics and Trade Press: Beijing, China, 2016; pp. 117–119. Available online: https://www.scirp.org/reference/referencespapers?referenceid=2349360 (accessed on 15 December 2023).
- Liu, X.; Zhao, S.; Tan, L.; Tan, Y.; Wang, Y.; Ye, Z.; Hou, C.; Xu, Y.; Liu, S.; Wang, G. Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis. Biosens. Bioelectron. 2022, 201, 113932. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Kim, G.; Li, Q.; Newman, G. Web of science-based green infrastructure: A bibliometric analysis in citespace. Land 2021, 10, 711. [Google Scholar] [CrossRef]
- Wang, W.; Lu, C. Visualization analysis of big data research based on Citespace. Soft Comput. 2020, 24, 8173–8186. [Google Scholar] [CrossRef]
Event Type | Cause | Timing |
---|---|---|
Planned events | √ | √ |
Recurring events | × | √ |
Spontaneous events | √ | × |
Black swan events | × | × |
Event Type | Classification Category | Keywords |
---|---|---|
Planned events | Political activities, performance, sports events, celebrations | Political polls, voting behavior, political forecasting, political campaigns, political sentiment and trends, artistic performance, concert, theater, sports prediction, holiday trend, celebration event, holiday culture |
Recurring events | Seasonal weather events, regular update and maintenance of the computer, traffic congestion, regular meeting, religious ceremony, financial events regularly | Seasonal precipitation, seasonal climate changes, meteorological seasons, seasonal weather, seasonal patterns, recurring events, system maintenance, patch management, preventive maintenance, IT infrastructure, commuter patterns, transportation planning, rush hour, commuter behavior, public transportation, meeting scheduling, meeting frequency, agenda setting, worship practices, rituals and traditions, ceremonial practices, faith-based celebrations, religious festivals, financial events, economic cycles, market fluctuations |
Spontaneous events | Geological hazards, sudden network attacks and data leaks in computers, traffic accident, unexpected weather events, emergency health crisis, sudden environmental disaster (oil spill, etc.) | Earthquake prediction, volcanic activity, landslide susceptibility, natural disaster, geological monitoring, geological hazards, cyberattacks, intrusion detection, cyberattacks, network security, hacker attacks, traffic collisions, vehicle safety, road infrastructure, driver behavior, emergency response, traffic accident, extreme weather, tornado outbreaks, severe storms, climate anomalies, hurricane, typhoon, public health emergency, epidemic, pandemic, health crisis management, environmental crisis, pollution incident, ecological impact, environmental monitoring |
Tool | Advantages | Disadvantages |
---|---|---|
Bibexcel |
|
|
Gephi |
|
|
VOSviewer |
|
|
Citespace |
|
|
Author | Betweenness Centrality | Degree Centrality | Closeness Centrality | Year |
---|---|---|---|---|
William C. Skamarock | 0.12 | 33 | 0.83 | 2013 |
Kevin Edward Trenberth | 0.11 | 27 | 0.76 | 2012 |
Eugenia Kalnay | 0.10 | 26 | 0.65 | 2012 |
Richard M. Iverson | 0.09 | 12 | 0.47 | 2012 |
Fausto Guzzetti | 0.09 | 45 | 0.71 | 2012 |
Author | Citation Burst | Year (Begin to End) |
---|---|---|
Alex Graves | 22.08 | 2020–2022 |
Wei Chen | 15.66 | 2020–2022 |
Samuele Segoni | 15.15 | 2020–2022 |
Dede Sinan Akkar | 15.07 | 2017–2019 |
Dieu Tien Bui | 14.72 | 2020–2022 |
ID | Size | Silhouette | Mean (Year) | Label (LLR) |
---|---|---|---|---|
0 | 37 | 0.758 | 2013 | Weather research |
1 | 31 | 0.83 | 2014 | Rainfall threshold; Debris flow |
2 | 20 | 0.777 | 2019 | Deep learning; Convolutional neural network |
3 | 13 | 0.794 | 2015 | Ground motion model; Ground motion prediction equation |
4 | 12 | 0.946 | 2012 | Eruption forecasting; Earthquake forerunner |
Title | Betweenness Centrality | Degree Centrality | Closeness Centrality | Author | Year | Source |
---|---|---|---|---|---|---|
Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, Southern Italy | 0.45 | 22 | 0.64 | Gariano, S. L. et al. | 2015 | Geomorphology |
Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in Southern California | 0.44 | 20 | 0.65 | Staley, D. M. et al. | 2013 | Landslides |
Deep learning for short-term traffic flow prediction | 0.44 | 16 | 0.67 | Polson, N. G., and Sokolov, V. O. | 2017 | Transportation Research Part C: Emerging Technologies |
Review on event detection techniques in social multimedia | 0.40 | 13 | 0.61 | Garg, M., and Kumar, M. | 2016 | Online Information Review |
Ontology-based deep learning for human behavior prediction with explanations in health social networks | 0.39 | 16 | 0.63 | Phan, N. et al. | 2017 | Information Sciences |
Title | Citation Burst | Author | Burst Year (Begin to End) | Source |
---|---|---|---|---|
The JRA-55 reanalysis: general specifications and basic characteristics | 8.03 | Kobayashi, S. et al. | 2019–2020 | Journal of the Meteorological Society of Japan |
A review of the recent literature on rainfall thresholds for landslide occurrence | 7.66 | Segoni, S. et al. | 2019–2022 | Landslides |
NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes | 7.58 | Boore, D. M. et al. | 2016–2019 | Earthquake Spectra |
Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East | 6.86 | Akkar, S. et al. | 2017–2019 | Bulletin of Earthquake Engineering |
Skill of real-time seasonal ENSO model predictions during 2002–2011: Is our capability increasing | 6.26 | Barnston, A. G. et al. | 2015–2017 | Bulletin of the American Meteorological Society |
ID | Size | Silhouette | Mean (Year) | Label (LLR) |
---|---|---|---|---|
0 | 33 | 0.993 | 2017 | Machine learning |
1 | 33 | 0.878 | 2014 | Westerly wind bursts; El Nino diversity |
2 | 27 | 0.923 | 2012 | Volcanic hazard; Volcanic eruption |
3 | 18 | 0.870 | 2013 | Enso; Seasonal prediction |
4 | 18 | 0.996 | 2014 | Seismic hazard; Sensitivity analysis |
Institution | Betweenness Centrality | Degree Centrality | Closeness Centrality | Country | Year |
---|---|---|---|---|---|
Centre National de la Recherche Scientifique | 0.17 | 95 | 0.93 | France | 2012 |
University of California System | 0.15 | 75 | 0.79 | United States of America | 2012 |
Helmholtz Association | 0.15 | 72 | 0.87 | Germany | 2014 |
National Oceanic Atmospheric Admin | 0.15 | 53 | 0.84 | United States of America | 2012 |
Swiss Federal Institutes of Technology Domain | 0.12 | 65 | 0.86 | Switzerland | 2012 |
Keywords | Betweenness Centrality | Degree Centrality | Closeness Centrality | Year |
---|---|---|---|---|
Extreme event | 0.23 | 87 | 0.86 | 2012 |
El Nino | 0.16 | 64 | 0.77 | 2013 |
Sea surface temperature | 0.13 | 21 | 0.68 | 2012 |
Extreme weather event | 0.10 | 29 | 0.73 | 2016 |
Prediction accuracy | 0.08 | 38 | 0.69 | 2012 |
Keywords | Citation Burst | Year (Begin to End) |
---|---|---|
Recurrent neural network | 13.32 | 2017–2022 |
Prediction model | 12.39 | 2016–2022 |
Extreme event | 11.32 | 2018–2022 |
Weather sensor | 10.07 | 2014–2022 |
Artificial intelligence | 7.35 | 2019–2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Liu, J.; Li, S.; Yang, S.; Li, F. Exploring and Visualizing Research Progress and Emerging Trends of Event Prediction: A Survey. Appl. Sci. 2023, 13, 13346. https://doi.org/10.3390/app132413346
Xu S, Liu J, Li S, Yang S, Li F. Exploring and Visualizing Research Progress and Emerging Trends of Event Prediction: A Survey. Applied Sciences. 2023; 13(24):13346. https://doi.org/10.3390/app132413346
Chicago/Turabian StyleXu, Shishuo, Jinbo Liu, Songnian Li, Su Yang, and Fangning Li. 2023. "Exploring and Visualizing Research Progress and Emerging Trends of Event Prediction: A Survey" Applied Sciences 13, no. 24: 13346. https://doi.org/10.3390/app132413346
APA StyleXu, S., Liu, J., Li, S., Yang, S., & Li, F. (2023). Exploring and Visualizing Research Progress and Emerging Trends of Event Prediction: A Survey. Applied Sciences, 13(24), 13346. https://doi.org/10.3390/app132413346