Time Series Prediction in Industry 4.0: A Comprehensive Review and Prospects for Future Advancements
Abstract
:1. Introduction
2. Evolution of Industrial Revolutions: From Steam Power to Industry 4.0
2.1. Industry 1.0—The First Industrial Revolution: The Era of Mechanical Production
2.2. Industry 2.0—The Second Industrial Revolution: The Era of Science and Mass Production
2.3. Industry 3.0—The Third Industrial Revolution: The Digital Revolution
2.4. Industry 4.0—The Fourth Industrial Revolution: It Starts Now
3. Key Technologies Shaping the Fourth Industrial Revolution
4. Advancements in Industry 4.0 and Pandemic Management
4.1. Artificial Intelligence and Machine Learning
4.2. Internet of Things (IoT)
4.3. Cloud Computing
4.4. Predictive Maintenance and Prognosis
4.5. Time Series Analysis and Anomaly Detection
4.6. Advancements in Industry 4.0 and Pandemic Management
4.7. Comparative Analysis of AI, IoT, and Cloud Computing in Industry 4.0
4.7.1. Artificial Intelligence (AI)
4.7.2. Internet of Things (IoT)
4.7.3. Cloud Computing
4.7.4. Synergistic Effects
4.7.5. Specific Challenges
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allnutt, C. The Ultimate Guide to Industry 4.0–Inside the Fourth Industrial Revolution. 2022. Available online: www.microsourcing.com/learn/blog/what-is-industry-4-0-the-ultimate-guide/ (accessed on 2 August 2023).
- Soori, M.; Arezoo, B.; Dastres, R. Artificial intelligence, machine learning and deep learning in advanced robotics, A review. Cogn. Robot. 2023, 3, 54–70. [Google Scholar] [CrossRef]
- Lee, J.; Bagheri, B.; Kao, H.-A. A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Alcácer, V.; Cruz-Machado, V. Scanning the industry 4.0: A literature review on technologies for manufacturing systems. Eng. Sci. Technol. Int. J. 2019, 22, 899–919. [Google Scholar] [CrossRef]
- Morgan, J.; Halton, M.; Qiao, Y.; Breslin, J. Industry 4.0 smart reconfigurable manufacturing machines. J. Manuf. Syst. 2021, 59, 481–506. [Google Scholar] [CrossRef]
- McKinsey & Company. What are Industry 4.0, the Fourth Industrial Revolution, and 4IR? 17 August 2022. Available online: https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-are-industry-4-0-the-fourth-industrial-revolution-and-4ir (accessed on 2 February 2023).
- Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [Google Scholar] [CrossRef]
- Rupp, M.; Schneckenburger, M.; Merkel, M.; Börret, R.; Harrison, D.K. Industry 4.0: A Technological-Oriented Definition Based on Bibliometric Analysis and Literature Review. J. Open Innov. Technol. Mark. Complex. 2021, 7, 68. [Google Scholar] [CrossRef]
- De Santo, A.; Ferraro, A.; Galli, A.; Moscato, V.; Sperlì, G. Evaluating time series encoding techniques for predictive maintenance. Expert Syst. Appl. 2022, 210, 118435. [Google Scholar] [CrossRef]
- Christ, M.; Kempa-Liehr, A.W.; Feindt, M. Distributed and parallel time series feature extraction for industrial big data applications. arXiv 2016, arXiv:1610.07717. [Google Scholar]
- Wahid, A.; Breslin, J.G.; Intizar, M.A. Prediction of machine failure in industry 4.0: A hybrid CNN-LSTM framework. Appl. Sci. 2022, 12, 4221. [Google Scholar] [CrossRef]
- da Silva Arantes, J.; da Silva Arantes, M.; Fröhlich, H.; Siret, L.; Bonnard, R. A novel unsupervised method for anomaly detection in time series based on statistical features for industrial predictive maintenance. Int. J. Data Sci. Anal. 2021, 12, 383–404. [Google Scholar] [CrossRef]
- Cook, A.A.; Mısırlı, G.; Fan, Z. Anomaly detection for IoT time-series data: A survey. IEEE Internet Things J. 2019, 7, 6481–6494. [Google Scholar] [CrossRef]
- Sgueglia, A.; Di Sorbo, A.; Visaggio, C.; Canfora, G. A systematic literature review of IoT time series anomaly detection solutions. Future Gener. Comput. Syst. 2022, 134, 170–186. [Google Scholar] [CrossRef]
- Liu, Y.; Garg, S.; Nie, J.; Zhang, Y.; Xiong, z.; Kang, J.; Hossain, M. Deep anomaly detection for time-series data in industrial IoT: A communication-efficient on-device federated learning approach. IEEE Internet Things J. 2020, 8, 6348–6358. [Google Scholar] [CrossRef]
- Mezair, T.; Djenouri, Y.; Belhadi, A.; Srivastava, G. A sustainable deep learning framework for fault detection in 6G Industry 4.0 heterogeneous data environments. Comput. Commun. 2022, 187, 164–171. [Google Scholar] [CrossRef]
- Chen, J.; Li, K.; Rong, H.; Bilal, K.; Li, K.; Yu, P. A periodicity-based parallel time series prediction algorithm in cloud computing environments. Inf. Sci. 2019, 496, 506–537. [Google Scholar] [CrossRef]
- Ra Rahman, A.; Shakur, S.; Ahamed, S.; Hasan, S. A cloud-based cyber-physical system with industry 4.0: Remote and digitized additive manufacturing. Automation 2022, 3, 400–425. [Google Scholar] [CrossRef]
- Deng, A.; Hooi, B. Graph neural network-based anomaly detection in multivariate time series. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Event, 2–9 February 2021; Volume 35. [Google Scholar]
- Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. The M4 Competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 2020, 36, 54–74. [Google Scholar] [CrossRef]
- Hizam-Hanafiah, M.; Soomro, M.A.; Abdullah, N.L. Industry 4.0 readiness models: A systematic literature review of model dimensions. Information 2020, 11, 364. [Google Scholar] [CrossRef]
- Eswaran, M.; Bahubalendruni, M.V.A.R. Challenges and opportunities on AR/VR technologies for manufacturing systems in the context of industry 4.0: A state of the art review. J. Manuf. Syst. 2022, 65, 260–278. [Google Scholar] [CrossRef]
- Lugaresi, G.; Gangemi, S.; Gazzoni, G.; Matta, A. Online validation of simulation-based digital twins exploiting time series analysis. In Proceedings of the 2022 Winter Simulation Conference (WSC), Singapore, 11–14 December 2022. [Google Scholar]
- van Dinter, R.; Tekinerdogan, B.; Catal, C. Predictive maintenance using digital twins: A systematic literature review. Inf. Softw. Technol. 2022, 151, 107008. [Google Scholar] [CrossRef]
- Keung, K.; Lee, C.; Xia, L.; Liu, C.; Liu, B. A cyber-physical robotic mobile fulfillment system in smart manufacturing: The simulation aspect. Robot. Comput. Integr. Manuf. 2023, 83, 102578. [Google Scholar] [CrossRef]
- Wang, X.; Liu, M.; Liu, C.; Ling, L.; Zhang, X. Data-driven and Knowledge-based predictive maintenance method for industrial robots for the production stability of intelligent manufacturing. Expert Syst. Appl. 2023, 234, 121136. [Google Scholar] [CrossRef]
- Aldrini, J.; Chihi, I.; Sidhom, L. Fault diagnosis and self-healing for smart manufacturing: A review. J. Intell. Manuf. 2023, 1–33. Available online: https://link.springer.com/article/10.1007/s10845-023-02165-6 (accessed on 2 August 2023). [CrossRef]
- Kumar, P.; Khalid, S.; Kim, H.S. Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications-A Review. Mathematics 2023, 11, 3008. [Google Scholar] [CrossRef]
- Barredo Arrieta, A.; Diaz-Rodriguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Jan, Z.; Ahamed, F.; Mayer, W.; Patel, N. Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert Syst. Appl. 2022, 216, 119456. [Google Scholar] [CrossRef]
- Petropoulos, F.; Apiletti, D.; Assimakopoulos, V.; Babai, M.; Barrow, D. Forecasting: Theory and practice. Int. J. Forecast. 2022, 38, 705–871. [Google Scholar] [CrossRef]
- Challu, C.; Olivares, K.; Oreshkin, B.; Ramirez, F.; Canseco, M.; Dubrawski, A. NHITS: Neural Hierarchical Interpolation for Time Series Forecasting. In Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37. [Google Scholar]
- George, A.; Dey, S.; Banerjee, D.; Mukherjee, A. Online time-series forecasting using spiking reservoir. Neurocomputing 2023, 518, 82–94. [Google Scholar] [CrossRef]
- Rangapuram, S.; Werner, L.; Benidis, K.; Mercado, P.; Gasthaus, J.; Januschowski, T. End-to-end learning of coherent probabilistic forecasts for hierarchical time series. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual Event, 18–24 July 2021. [Google Scholar]
- Kim, B.; Alawami, M.; Kim, E.; Oh, S.; Park, J.; Kim, H. A comparative study of time series anomaly detection models for industrial control systems. Sensors 2023, 23, 1310. [Google Scholar] [CrossRef] [PubMed]
- Sabir, Z.; Raja, M.; Alhazmi, S.; Gupta, M.; Arbi, A.; Baba, I. Applications of artificial neural network to solve the nonlinear COVID-19 mathematical model based on the dynamics of SIQ. J. Taibah Univ. Sci. 2022, 16, 874–884. [Google Scholar] [CrossRef]
- Ensafi, Y.; Amin, S.; Zhang, G.; Shah, B. Time-series forecasting of seasonal items sales using machine learning-A comparative analysis. Int. J. Inf. Manag. Data Insights 2022, 2, 100058. [Google Scholar] [CrossRef]
- Eldele, E.; Ragab, M.; Chen, Z.; Wu, M.; Kwoh, C.; Li, X. Label-efficient time series representation learning: A review. arXiv 2023, arXiv:2302.06433. [Google Scholar]
- Shah, S.; Patel, D.; Long Vu, L.; Dang, X.; Chen, B.; Kirchner, P. AutoAI-TS: AutoAI for time series forecasting. In Proceedings of the 2021 International Conference on Management of Data, Virtual Event, 20–25 June 2021. [Google Scholar]
- Ahmad, M.; Sadiq, S.; Eshmawi, A.A.; Alluhaidan, A.S.; Umer, M.; Ullah, S.; Nappi, M. Industry 4.0 technologies and their applications in fighting COVID-19 pandemic using deep learning techniques. Comput. Biol. Med. 2022, 145, 105418. [Google Scholar] [CrossRef]
- Balamurugan, E.; Flaih, L.R.; Yuvaraj, D.; Sangeetha, K.; Jayanthiladevi, A.; Kumar Senthil, T. Use case of artificial intelligence in machine learning manufacturing 4.0. In Proceedings of the 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), Dubai, United Arab Emirates, 11–12 December 2019. [Google Scholar]
- Bécue, A.; Isabel, P.; João, G. Artificial intelligence, cyber-threats and Industry 4.0: Challenges and opportunities. Artif. Intell. Rev. 2021, 54, 3849–3886. [Google Scholar] [CrossRef]
- Chen, T.; Yu-Cheng, W. Hybrid big data analytics and Industry 4.0 approach to projecting cycle time ranges. Int. J. Adv. Manuf. Technol. 2022, 120, 279–295. [Google Scholar] [CrossRef]
- Jacome, R.; Realpe, M.; Paillacho, J. Time series in sensor data using state-of-the-art deep learning approaches: A systematic literature review. In Communication, Smart Technologies and Innovation for Society, Proceedings of the CITIS 2021, Guayaquil, Ecuador, 22–25 November 2021; Rocha, Á., López-López, P.C., Salgado-Guerrero, J.P., Eds.; Springer: Singapore, 2021; pp. 503–514. [Google Scholar]
- Javaheri, D.; Grogin, S.; Lee, J.; Masdari, M. Fuzzy logic-based DDoS attacks and network traffic anomaly detection methods: Classification, overview, and future perspectives. Inf. Sci. 2023, 626, 315–338. [Google Scholar] [CrossRef]
- Tang, C.; Xu, L.; Yang, B.; Tang, Y.; Zhao, D. GRU-Based Interpretable Multivariate Time Series Anomaly Detection in Industrial Control System. Comput. Secur. 2023, 127, 103094. [Google Scholar] [CrossRef]
- Zeiser, A.; Özcan, B.; Stein, N.; Bäck, T. Evaluation of deep unsupervised anomaly detection methods with a data-centric approach for on-line inspection. Comput. Ind. 2023, 146, 103852. [Google Scholar] [CrossRef]
- Masini, R.P.; Medeiros, M.C.; Mendes, E.F. Machine learning advances for time series forecasting. J. Econ. Surv. 2023, 37, 76–111. [Google Scholar] [CrossRef]
- Makridakis, S.; Spiliotis, E.; Assimakopoulos, V.; Semenoglou, A. Statistical, machine learning and deep learning forecasting methods: Comparisons and ways forward. J. Oper. Res. Soc. 2023, 74, 840–859. [Google Scholar] [CrossRef]
- Diez-Olivan, A.; Del Ser, J.; Galar, D.; Sierra, B. Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0. Inf. Fusion 2019, 50, 92–111. [Google Scholar] [CrossRef]
- Rao, S.K.; Prasad, R. Impact of 5G technologies on industry 4.0. Wirel. Pers. Commun. 2018, 100, 145–159. [Google Scholar] [CrossRef]
- Kuo, C.; Ting, K.; Chen, Y.; Yang, D.; Chen, H. Automatic machine status prediction in the era of Industry 4.0: Case study of machines in a spring factory. J. Syst. Archit. 2017, 81, 44–53. [Google Scholar] [CrossRef]
- Villalobos, K.; Diez, B. I4tsrs: A system to assist a data engineer in time-series dimensionality reduction in industry 4.0 scenarios. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 22–26 October 2018. [Google Scholar]
- Villalobos, K.; Ramírez-Durán, V.; Diez, B.; Blanco, J. A three level hierarchical architecture for an efficient storage of industry 4.0 data. Comput. Ind. 2020, 121, 103257. [Google Scholar] [CrossRef]
- Chen, C.; Liu, L.; Wan, S.; Hui, X.; Pei, Q. Data dissemination for industry 4.0 applications in internet of vehicles based on short-term traffic prediction. ACM Trans. Internet Technol. TOIT 2021, 22, 3. [Google Scholar] [CrossRef]
- Enes, J.; Expósito, R.; Fuentes, J.; Cacheiro, J.; Touriño, J. A pipeline architecture for feature-based unsupervised clustering using multivariate time series from HPC jobs. Inf. Fusion 2023, 93, 1–20. [Google Scholar] [CrossRef]
- Moosavi, J.; Bakhshi, J.; Martek, I. The application of industry 4.0 technologies in pandemic management: Literature review and case study. Healthc. Anal. 2021, 1, 100008. [Google Scholar] [CrossRef]
- Zalte-Gaikwad, S.S.; Chatterjee, I.; Kamat, R.K. Synergistic Interaction of Big Data with Cloud Computing for Industry 4.0; Taylor & Francis Ltd.: London, UK, 2022. [Google Scholar]
- Grigoriou, N.N.; Fink, A. Cloud Computing: Key to Enabling Smart Production and Industry 4.0. In The Future of Smart Production for SMEs; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Gautam, S. Comparison of Edge and Cloud Computing Technology for Industry 4.0 Perspective on the Future. Int. J. Sci. Res. Eng. Manag. 2023, 1–11. [Google Scholar] [CrossRef]
- Pandey, S.; Laxmi, V.; Mahapatra, R.P. Industry 4.0, Intelligent Manufacturing, Internet of Things, Cloud Computing: An Overview. In A Roadmap for Enabling Industry 4.0 by Artificial Intelligence; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
- Achouch, M.; Dimitrova, M.; Ziane, K.; Sattarpanah Karganroudi, S.; Dhouib, R.; Ibrahim, H.; Adda, M. On predictive maintenance in industry 4.0: Overview, models, and challenges. Appl. Sci. 2022, 12, 8081. [Google Scholar] [CrossRef]
- Serradilla, O.; Zugasti, E.; Zurutuza, U. Deep learning models for predictive maintenance: A survey, comparison, challenges and prospects. Appl. Intell. 2022, 52, 10934–10964. [Google Scholar] [CrossRef]
- Schmidt, B.; Wang, L. Predictive maintenance of machine tool linear axes: A case from manufacturing industry. Procedia Manuf. 2018, 17, 118–125. [Google Scholar] [CrossRef]
- Nunes, P.; Santos, J.; Rocha, E. Challenges in predictive maintenance-A review. CIRP J. Manuf. Sci. Technol. 2023, 40, 53–67. [Google Scholar] [CrossRef]
- Zhang, Y.; Xin, Y.; Liu, Z.; Chi, M.; Ma, G. Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE. Reliab. Eng. Syst. Saf. 2022, 220, 108263. [Google Scholar] [CrossRef]
- Lara-Benítez, P.; Carranza-García, M.; Riquelme, J.C. Riquelme. An experimental review on deep learning architectures for time series forecasting. Int. J. Neural Syst. 2021, 31, 2130001. [Google Scholar] [CrossRef] [PubMed]
- Effrosynidis, D.; Spiliotis, E.; Sylalos, G.; Arampatzis, A. Time series and regression methods for univariate environmental forecasting: An empirical evaluation. Sci. Total Environ. 2023, 875, 162580. [Google Scholar] [CrossRef]
- Jansen, F.; Holenderski, M.; Ozcelebi, T.; Dam, P.; Tijsma, B. Predicting machine failures from industrial time series data. In Proceedings of the 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT), Thessaloniki, Greece, 10–13 April 2018. [Google Scholar]
- Ruiz-Sarmiento, J.; Monroy, J.; Moreno, F.; Galindo, C. A predictive model for the maintenance of industrial machinery in the context of industry 4.0. Eng. Appl. Artif. Intell. 2020, 87, 103289. [Google Scholar] [CrossRef]
- Akkaya, B.; Malik, M.; Jermsittiparsert, K.; Koçyiğit, Y. Emerging Trends in and Strategies for Industry 4.0 during and beyond COVID-19; De Gruyter: Berlin, Germany; Boston, MA, USA, 2021. [Google Scholar]
- Züfle, M.; Agne, J.; Grohmann, J.; Dortoluk, I. A Predictive Maintenance Methodology: Predicting the Time-to-Failure of Machines in Industry 4.0. In Proceedings of the 2021 IEEE 19th International Conference on Industrial Informatics (INDIN), Palma de Mallorca, Spain, 21–23 July 2021. [Google Scholar]
- Leander, B.; Causevic, A.; Hansson, H.; Lindström, T. Toward an ideal access control strategy for industry 4.0 manufacturing systems. IEEE Access 2021, 9, 114037–114050. [Google Scholar] [CrossRef]
- Sang, G.M.; Xu, L.; de Vrieze, P. A predictive maintenance model for flexible manufacturing in the context of industry 4.0. Front. Big Data 2021, 4, 663466. [Google Scholar] [CrossRef]
- Torim, A.; Liiv, I.; Ounoughi, C.; Yahia, S.B. Pattern Based Software Architecture for Predictive Maintenance. In Nordic Artificial Intelligence Research and Development, Communications in Computer and Information Science, Proceedings of the 4th Symposium of the Norwegian AI Society, NAIS 2022, Oslo, Norway, 31 May–1 June 2022; Zouganeli, E., Yazidi, A., Mello, G., Lind, P., Eds.; Springer: Cham, Switzerland, 2022; Volume 1650. [Google Scholar] [CrossRef]
- Gautam, S.; Noureddine, R.; Solvang, W.D. Machine Learning and IIoT Application for Predictive Maintenance. In Advanced Manufacturing and Automation XII, Proceedings of the International Workshop of Advanced Manufacturing and Automation, Xiamen, China, 11–12 October 2022; Wang, Y., Yu, T., Wang, K., Eds.; Springer: Singapore, 2023. [Google Scholar]
- Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are Transformers Effective for Time Series Forecasting? In Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37. [Google Scholar]
- Jin, M.; Koh, H.; Wen, Q.; Zambon, D.; Alippi, C.; Webb, G.; King, I.; Pan, S. A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection. arXiv 2023, arXiv:2307.03759. [Google Scholar]
- Kim, S.; Choi, K.; Choi, H.; Lee, B.; Yoon, S. Towards a rigorous evaluation of time-series anomaly detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Event, 22 February–1 March 2022; Volume 36. [Google Scholar]
- Dai, E.; Chen, J. Graph-augmented normalizing flows for anomaly detection of multiple time series. arXiv 2022, arXiv:2202.07857. [Google Scholar]
- Coelhoa, D.; Diogo Costaa, D.; Rochab, E.; Almeidad, D.; Santos, J. Predictive maintenance on sensorized stamping presses by time series segmentation, anomaly detection, and classification algorithms. Procedia Comput. Sci. 2022, 200, 1184–1193. [Google Scholar] [CrossRef]
- Blazquez-Garcıa, A.; Conde, A.; Mori, U.; Lozano, J.A. A review on outlier/anomaly detection in time series data. ACM Comput. Surv. CSUR 2021, 54, 56. [Google Scholar] [CrossRef]
- Hajirahimi, Z.; Khashei, M. Hybridization of hybrid structures for time series forecasting: A review. Artif. Intell. Rev. 2023, 56, 1201–1261. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Liu, Z.; Liang, X.; Si, S. The entropy algorithm and its variants in the fault diagnosis of rotating machinery: A review. IEEE Access 2018, 6, 66723–66741. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, G.; Liu, M.; Yu, S.; Liu, Y.; Yang, X. Prediction of the fourth industrial revolution based on time series. In Proceedings of the 2018 International Conference on Intelligent Information Technology, Hanoi, Vietnam, 26–28 February 2018. [Google Scholar]
- Baranowski, J.; Bauer, W.; Kashpruk, N.; Zagorowska, M. Predicting system degradation using Bayesian time series models. In Proceedings of the 2021 25th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 23–26 August 2021. [Google Scholar]
- López-Blanco, R.; Martín, J.; Alonso, R.; Prieto, J. Time Series Forecasting for Improving Quality of Life and Ecosystem Services in Smart Cities. In International Symposium on Ambient Intelligence; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar]
- Dimoudis, D.; Vafeiadis, T.; Nizamis, A.; Ioannidis, D. Utilizing an adaptive window rolling median methodology for time series anomaly detection. Procedia Comput. Sci. 2023, 217, 584–593. [Google Scholar] [CrossRef]
- Stahmann, P.; Rieger, B. A Benchmark for Real-Time Anomaly Detection Algorithms Applied in Industry 4.0. In Machine Learning, Optimization, and Data Science, Proceedings of the 8th International Conference, LOD 2022, Certosa di Pontignano, Italy, 18–22 September 2022; Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P., Di Fatta, G., Giuffrida, G., Umeton, R., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Fan, Q.; Fan, H. Reliability analysis and failure prediction of construction equipment with time series models. J. Adv. Manag. Sci. 2015, 3, 163–177. [Google Scholar] [CrossRef]
- Jin, X.; Gong, W.; Kong, J.; Bai, Y.; Su, T. PFVAE: A planar flow-based variational auto-encoder prediction model for time series data. Mathematics 2022, 10, 610. [Google Scholar] [CrossRef]
- Chiarot, G.; Silvestri, C. Time series compression survey. ACM Comput. Surv. 2023, 55, 198. [Google Scholar] [CrossRef]
- Oztemel, E.; Gursev, S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2020, 31, 127–182. [Google Scholar] [CrossRef]
- Para, J.; Del Ser, J.; Aguirre, A.; Nebro, A.J. Decision making in Industry 4.0 scenarios supported by imbalanced data classification. In Intelligent Distributed Computing XII, Proceedings of the 12th International Symposium on Intelligent Distributed Computing, Bilbao, Spain, 15–17 October 2018; Del Ser, J., Osaba, E., Bilbao, M., Sanchez-Medina, J., Vecchio, M., Yang, X.S., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Liu, J. Big Data-Driven Macroeconomic Forecasting Model and Psychological Decision Behavior Analysis for Industry 4.0. Complexity 2021, 2021, 6631837. [Google Scholar] [CrossRef]
- Wichmann, R.; Eisenbart, B.; Gericke, K. The Direction of Industry: A Literature Review on Industry 4.0. In Proceedings of the Design Society: International Conference on Engineering Design, Melbourne, VIC, Australia, 5–8 August 2019; Cambridge University Press: Cambridge, UK, 2019; Volume 1, pp. 2129–2138. [Google Scholar]
- Erboz, G. How to define industry 4.0: Main pillars of industry 4.0. Manag. Trends Dev. Enterp. Glob. Era 2017, 761, 761–767. [Google Scholar]
- Vidosav, M.; Stojadinovic, S.; Lalic, B.; Marjanovic, U. ERP in industry 4.0 context. In Advances in Production Management Systems. The Path to Digital Transformation and Innovation of Production Management Systems, Proceedings of the IFIP International Conference on Advances in Production Management Systems, Novi Sad, Serbia, 30 August–3 September 2020; Lalic, B., Majstorovic, V., Marjanovic, U., von Cieminski, G., Romero, D., Eds.; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Green, M.; Elena Musi, E.; Sheard, S. Identifying how COVID-19-related misinformation reacts to the announcement of the UK national lockdown: An interrupted time-series study. Big Data Soc. 2021, 8, 20539517211013869. [Google Scholar] [CrossRef]
- Bandara, K.; Hewamalage, H.; Liu, Y.-H.; Kang, Y.; and Bergmeir, C. Improving the accuracy of global forecasting models using time series data augmentation. Pattern Recognit. 2021, 120, 108148. [Google Scholar] [CrossRef]
- Song, M.; Li, Y.; Pedrycz, W. Time series prediction with granular neural networks. Neurocomputing 2023, 546, 126328. [Google Scholar] [CrossRef]
- Safavi, S.; Safavi, A.; Hamid, H.; Fallah, S. Multi-sensor fault detection, identification, isolation and health forecasting for autonomous vehicles. Sensors 2021, 21, 2547. [Google Scholar] [CrossRef]
- Yan, X.; Yan, W.-J.; Xu, Y.; Yuen, K.-V. Machinery multi-sensor fault diagnosis based on adaptive multivariate feature mode decomposition and multi-attention fusion residual convolutional neural network. Mech. Syst. Signal Process. 2023, 202, 110664. [Google Scholar] [CrossRef]
- Yue, X.; Al Kontar, R. Joint models for event prediction from time series and survival data. Technometrics 2021, 63, 477–486. [Google Scholar] [CrossRef]
- Bai, C.; Dallasega, P.; Orzes, G.; Sarkis, J. Industry 4.0 technologies assessment: A sustainability perspective. Int. J. Prod. Econ. 2020, 29, 107776. [Google Scholar] [CrossRef]
Study | Focus | AI/ML Technologies |
---|---|---|
[40] | COVID-19 diagnosis using radiological images | Deep convolutional neural networks (CNN) |
[41] | Smart factories and process automation | IoT, artificial intelligence (AI), cyber-physical systems, machine learning (ML) |
[42] | AI in manufacturing for offensive and defensive uses | Security principles, detection techniques |
[43] | Forecasting for manufacturing jobs | BD-I4 (big data and Industry 4.0) |
[50] | “Smartization” of manufacturing industries | Data fusion, ML strategies |
[44] | Deep learning architectures for time series data | Long short-term memory (LSTM), convolutional neural networks (CNN), recurrent neural networks (RNN), stacked LSTM autoencoders |
[45] | DDoS attacks in Industry 4.0 | Fuzzy-logic-based detection methods |
[46] | Time series anomaly detection | Neural graph networks, gated recurrent units (GRU) |
[47] | Unsupervised anomaly detection in production | WaterGAN (WGAN), encoder CNN |
Study | Innovation or Challenge Addressed | IoT Application and Outcome |
---|---|---|
[51] | Implementation and utilization of IoT | Enhanced industry transformation and process optimization |
[52] | Machine status prediction with financial constraints for small factories | Inexpensive triaxial sensors and neural networks for accessible Industry 4.0 |
[53] | Time series data dimensionality for data engineers | I4TSRS for efficient data storage and transmission in industrial processes |
[54] | Hierarchical storage architecture for cloud environments | Cost-effective data management for Industry 4.0 time series data |
[55] | Data dissemination in IoV for city managers | Short-term traffic prediction and smart logistics management |
[56] | Feature-based unsupervised clustering for HPC jobs | Scalable clustering of large-scale data sets for industrial and research applications |
Study | Cloud Computing Application | Outcome/Contribution |
---|---|---|
[54] | Hierarchical storage architecture | Efficient storage, reduced costs for time series data |
[57] | Scientometric analysis and case study on COVID-19 management | Highlighting acceleration of digital transformation towards Industry 4.0 |
[43] | BD-I4 approach for cycle time projections | Improved forecasting accuracy with collaborative expertise |
[58] | Convergence of big data and cloud computing for Industry 4.0 | Development of scalable applications for Industry 4.0 challenges |
[59] | Cloud-based architectures for smart factories | Enhanced accessibility and cost-effectiveness |
[60] | Comparative analysis of edge and cloud computing technologies | Examination of benefits and drawbacks for Industry 4.0 applications |
[61] | Overview of IoT and cloud computing in intelligent manufacturing | Emphasizes cloud computing’s support for IoT and smart manufacturing |
Study | Predictive Maintenance Application | Outcome/Contribution |
---|---|---|
[70] | Health assessment of critical assets | Predictive model based on Bayesian filter |
[71] | Trends and strategies during COVID-19 | Insights on accelerated adoption of Industry 4.0 technologies |
[72] | Time-to-failure estimation methodology | Effective for machine failure prediction |
[73] | Access control strategies for manufacturing | Method for automatic policy generation |
[74] | PMMI 4.0: predictive maintenance model | Data-driven model for RUL estimation |
[75] | Flexible architecture for predictive maintenance | Advanced failure prediction and decision making |
[76] | ML and IIoT for predictive maintenance | Deep learning LSTM model for equipment performance prediction |
Study | Focus of Research | Impact on Industrial Applications |
---|---|---|
[66] | Prediction of the Fourth Industrial Revolution | Forecasting the occurrence and character of the Fourth Industrial Revolution |
[86] | Predictive model for system degradation | Bayesian time series models for turbomachinery |
[87] | Quality of life in smart cities | Time series forecasting for urban planning |
[88] | Anomaly detection in sensor data | Adaptive window rolling median methodology |
[45] | DDoS attacks and network traffic | Fuzzy-logic-based anomaly detection methods |
[23] | Validation of digital twins | Online validation method for digital twins |
[89] | Real-time anomaly detection algorithms | Benchmark for real-time anomaly detection |
Study | Focus of Advancement | Outcomes and Implications |
---|---|---|
[94] | Decision making in Industry 4.0 | Improved data classification for manufacturing quality |
[95] | Big-data-driven macroeconomic forecasting and decision behavior | Enhanced economic forecasting and analysis of psychological decision behavior |
[96] | Review of Industry 4.0 technologies | Identified trends and impact on manufacturing |
[97] | Digitalization in manufacturing | Insights into future business models and impact of CPS |
[98] | ERP integration in Industry 4.0 | Enhanced ERP systems for improved planning and control |
[57] | Scientometric analysis on Industry 4.0 | Insights into digital transformation accelerated by COVID-19 |
[99] | Impact of COVID-19 misinformation | Studied misinformation effects on public information sharing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashpruk, N.; Piskor-Ignatowicz, C.; Baranowski, J. Time Series Prediction in Industry 4.0: A Comprehensive Review and Prospects for Future Advancements. Appl. Sci. 2023, 13, 12374. https://doi.org/10.3390/app132212374
Kashpruk N, Piskor-Ignatowicz C, Baranowski J. Time Series Prediction in Industry 4.0: A Comprehensive Review and Prospects for Future Advancements. Applied Sciences. 2023; 13(22):12374. https://doi.org/10.3390/app132212374
Chicago/Turabian StyleKashpruk, Nataliia, Cezary Piskor-Ignatowicz, and Jerzy Baranowski. 2023. "Time Series Prediction in Industry 4.0: A Comprehensive Review and Prospects for Future Advancements" Applied Sciences 13, no. 22: 12374. https://doi.org/10.3390/app132212374
APA StyleKashpruk, N., Piskor-Ignatowicz, C., & Baranowski, J. (2023). Time Series Prediction in Industry 4.0: A Comprehensive Review and Prospects for Future Advancements. Applied Sciences, 13(22), 12374. https://doi.org/10.3390/app132212374