Prediction of Eudaimonic and Hedonic Orientation of Movie Watchers
<p>The machine-learning pipeline (symbols with dashed line edges illustrate that that step is not always performed).</p> "> Figure 2
<p>The machine-learning pipeline in more details (symbols with dashed line edges illustrate that that step is not always performed).</p> "> Figure 3
<p>The distribution of users: (<b>a</b>) histogram of hedonic (blue) and eudaimonic (green) values and (<b>b</b>) eudaimonic vs. hedonic quality.</p> "> Figure 4
<p>Elbow diagram. x-axis = Number of clusters; y-axis = Distortion (sum of square errors) of data points in the clusters. The clustering was performed with <span class="html-italic">KMeans</span> over eudaimonic and hedonic variables.</p> "> Figure 5
<p>Different clusters formed by <span class="html-italic">KMeans</span> over eudaimonic and hedonic variables. (<b>a</b>): k = 2, (<b>b</b>): k = 3, (<b>c</b>): k = 4 and (<b>d</b>): k = 5. The parameter <span class="html-italic">k</span> of <span class="html-italic">KMeans</span> in <span class="html-italic">scikit-learn</span> library determines the number of clusters.</p> "> Figure 6
<p>The different number of clusters using the <span class="html-italic">silhouette method</span> over eudaimonic and hedonic variables. (<b>a</b>): k = 2, (<b>b</b>): k = 3, (<b>c</b>): k = 4 and (<b>d</b>): k = 5. Parameter <span class="html-italic">k</span> determines the number of clusters. The average value of the Silhouette coefficients is shown with a red dashed line.</p> "> Figure 7
<p>The different number of clusters using <span class="html-italic">silhouette method</span> over eudaimonic and hedonic variables. (<b>a</b>): number of clusters = 2 and (<b>b</b>): number of clusters = 3. Parameter <span class="html-italic">n_clusters</span> determines the number of clusters. The average value of the Silhouette coefficients is shown with a red dashed line.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Personality Research from Psychology
2.2. Social-Media-Based Predictions Using Machine-Learning Models
- RQ1: How are users clustered based on their EHO values?
- RQ2: How do different machine-learning algorithms perform in predicting the EHO of users?
- RQ3: How do prediction algorithms perform with different groups of features?
3. Methods and Materials
3.1. Data Acquisition
- EHO of users.
- Personality.
- Genre preferences.
- Film sophistication.
3.2. Machine-Learning Workflow
4. Results and Discussion
4.1. User Clustering along Eudaimonic and Hedonic Orientation
4.2. Eudaimonic and Hedonic Orientation Prediction
4.2.1. Regression
4.2.2. Class Prediction
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BFI | Big Five Inventory |
EHO | eudaimonic and hedonic orientation of users |
EO | eudaimonic orientation of users |
HO | hedonic orientation of users |
EHP | eudaimonic and hoedonic perception of users |
EP | eudaimonic perception of users |
HP | hedonic perception of users |
FFM | Five Factor Model |
MSI | Musical Sophistication Index |
TIPI | Ten-Item Personality Inventory |
References
- McCrae, R.R.; John, O.P. An Introduction to the Five-Factor Model and its Applications. J. Personal. 1992, 60, 175–215. [Google Scholar] [CrossRef] [PubMed]
- Tkalčič, M.; Chen, L. Personality and Recommender Systems. In Recommender Systems Handbook; Ricci, F., Rokach, L., Shapira, B., Eds.; Springer: New York, NY, USA, 2022; pp. 757–787. [Google Scholar] [CrossRef]
- Matz, S.C.; Kosinski, M.; Nave, G.; Stillwell, D.J. Psychological targeting as an effective approach to digital mass persuasion. Proc. Natl. Acad. Sci. USA 2017, 114, 12714–12719. [Google Scholar] [CrossRef] [PubMed]
- Quercia, D.; Kosinski, M.; Stillwell, D.; Crowcroft, J. Our twitter profiles, our selves: Predicting personality with twitter. In Proceedings of the 2011 IEEE International Conference on Privacy, Security, Risk and Trust and IEEE International Conference on Social Computing, PASSAT/SocialCom 2011, Boston, MA, USA, 9–11 October 2011; pp. 180–185. [Google Scholar] [CrossRef]
- Golbeck, J.; Robles, C.; Edmondson, M.; Turner, K. Predicting Personality from Twitter. In Proceedings of the 2011 IEEE Third Int’l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int’l Conference on Social Computing, Boston, MA, USA, 9–11 October 2011; pp. 149–156. [Google Scholar] [CrossRef]
- Kosinski, M.; Stillwell, D.; Graepel, T. Private traits and attributes are predictable from digital records of human behavior. Proc. Natl. Acad. Sci. USA 2013, 110, 5802–5805. [Google Scholar] [CrossRef] [PubMed]
- Skowron, M.; Tkalčič, M.; Ferwerda, B.; Schedl, M. Fusing Social Media Cues. In Proceedings of the 25th International Conference Companion on World Wide Web-WWW ’16 Companion, Montréal, QC, Canada, 11–15 May 2016; ACM Press: New York, NY, USA, 2016; pp. 107–108. [Google Scholar] [CrossRef]
- Azucar, D.; Marengo, D.; Settanni, M. Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis. Personal. Individ. Differ. 2018, 124, 150–159. [Google Scholar] [CrossRef]
- Matz, S.; Chan, Y.W.F.; Kosinski, M. Models of Personality. In Emotions and Personality in Personalized Services: Models, Evaluation and Applications; Tkalčič, M., De Carolis, B., de Gemmis, M., Odić, A., Košir, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 35–54. [Google Scholar] [CrossRef]
- Stewart, B. Personality and Play Styles: A Unified Model. 2011, pp. 1–11. Available online: https://mud.co.uk/richard/hcds.htm (accessed on 15 September 2022).
- Holland, J.L. Making Vocational Choices: A Theory of Vocational Personalities and Work Environments; Psychological Assessment Resources; PrenticeHall: Englewood Cliffs, NJ, USA, 1997; Volume 3, pp. XIV, 303 S. [Google Scholar]
- Thomas, K.W.; Kilmann, R.H.; Trainer, J. Thomas–Kilmann Conflict Mode Instrument COMPETING ASSERTIVENESS; US, Jane Trainer Acme: Belmont, CA, USA, 2010. [Google Scholar]
- Oliver, M.B.; Raney, A.A. Entertainment as Pleasurable and Meaningful: Identifying Hedonic and Eudaimonic Motivations for Entertainment Consumption. J. Commun. 2011, 61, 984–1004. [Google Scholar] [CrossRef]
- Tkalčič, M.; Ferwerda, B. Eudaimonic Modeling of Moviegoers. In Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, Singapore, 8–11 July 2018; ACM: New York, NY, USA, 2018; pp. 163–167. [Google Scholar] [CrossRef]
- Tkalcic, M.; Motamedi, E.; Barile, F.; Puc, E.; Mars Bitenc, U. Prediction of Hedonic and Eudaimonic Characteristics from User Interactions. In Proceedings of the Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization, Barcelona, Spain, 4–7 July 2022; ACM: Barcelona, Spain, 2022; pp. 366–370. [Google Scholar] [CrossRef]
- Allport, G.W. Concepts of trait and personality. Psychol. Bull. 1927, 24, 284. [Google Scholar] [CrossRef]
- Goldberg, L.R. An alternative “description of personality”: The big-five factor structure. J. Personal. Soc. Psychol. 1990, 59, 1216. [Google Scholar] [CrossRef]
- Fiske, D.W. Consistency of the factorial structures of personality ratings from different sources. J. Abnorm. Soc. Psychol. 1949, 44, 329. [Google Scholar] [CrossRef] [PubMed]
- Feher, A.; Vernon, P.A. Looking beyond the Big Five: A selective review of alternatives to the Big Five model of personality. Personal. Individ. Differ. 2021, 169, 110002. [Google Scholar] [CrossRef]
- Delic, A.; Neidhardt, J.; Nguyen, T.N.; Ricci, F. An observational user study for group recommender systems in the tourism domain. Inf. Technol. Tour. 2018, 19, 87–116. [Google Scholar] [CrossRef]
- Abolghasemi, R.; Engelstad, P.; Herrera-Viedma, E.; Yazidi, A. A personality-aware group recommendation system based on pairwise preferences. Inf. Sci. 2022, 595, 1–17. [Google Scholar] [CrossRef]
- Botella, C.; Riva, G.; Gaggioli, A.; Wiederhold, B.K.; Alcaniz, M.; Baños, R.M.; Erino, S.I.S.; Ipresso, P.I.C.; Aggioli, A.N.G.; Allavicini, F.E.P.; et al. The Present and Future of Positive Technologies. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Wirth, W.; Hofer, M.; Schramm, H. Beyond Pleasure: Exploring the Eudaimonic Entertainment Experience. Hum. Commun. Res. 2012, 38, 406–428. [Google Scholar] [CrossRef]
- John, O.; Srivastava, S. The Big Five trait taxonomy: History, measurement, and theoretical perspectives. In Handbook of Personality: Theory and Research, 2nd ed.; Pervin, L.A., John, O.P., Eds.; Guilford Press: New York, NY, USA, 1999; Volume 2, pp. 102–138. [Google Scholar]
- Ferwerda, B.; Tkalčič, M. You Are What You Post: What the Content of Instagram Pictures Tells About Users’ Personality. In Proceedings of the ACM IUI 2018 Workshops, Tokyo, Japan, 7–11 March 2018; Volume 2068. [Google Scholar]
- Ferwerda, B.; Tkalčič, M. Exploring the Prediction of Personality Traits from Drug Consumption Profiles. In Proceedings of the Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization, Genoa, Italy, 12–18 July 2020; ACM: Genoa, Italy, 2020; pp. 2–5. [Google Scholar] [CrossRef]
- Berkovsky, S.; Taib, R.; Koprinska, I.; Wang, E.; Zeng, Y.; Li, J.; Kleitman, S. Detecting Personality Traits Using Eye-Tracking Data. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems-CHI ’19, Glasgow, UK, 4–9 May 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Gosling, S.D.; Rentfrow, P.J.; Swann, W.B., Jr. A very brief measure of the Big-Five personality domains. J. Res. Personal. 2003, 37, 504–528. [Google Scholar] [CrossRef]
- Müllensiefen, D.; Gingras, B.; Musil, J.; Stewart, L. The musicality of non-musicians: An index for assessing musical sophistication in the general population. PLoS ONE 2014, 9, e89642. [Google Scholar] [CrossRef] [PubMed]
- Van Rijn, J.N.; Hutter, F. Hyperparameter importance across datasets. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 2367–2376. [Google Scholar]
- Nainggolan, R.; Perangin-angin, R.; Simarmata, E.; Tarigan, A.F. Improved the performance of the K-means cluster using the sum of squared error (SSE) optimized by using the Elbow method. J. Phys. Conf. Ser. 2019, 1361, 012015. [Google Scholar] [CrossRef]
- Dou, Z.; Sun, Y.; Zhang, Y.; Wang, T.; Wu, C.; Fan, S. Regional Manufacturing Industry Demand Forecasting: A Deep Learning Approach. Appl. Sci. 2021, 11, 6199. [Google Scholar] [CrossRef]
- Srivastava, S. Norms for the Big Five Inventory and other personality measures. Hardest Sci. 2012, 17. Available online: https://thehardestscience.com/2012/10/17/norms-for-the-big-five-inventory-and-other-personality-measures/ (accessed on 15 September 2022).
- Hu, Y.; Ding, J.; Dou, Z.; Chang, H. Short-text classification detector: A bert-based mental approach. Comput. Intell. Neurosci. 2022, 2022, 8660828. [Google Scholar] [CrossRef] [PubMed]
Feature Groups | Feature Subgroups | Description | Range of Values |
---|---|---|---|
U-F | DEMQ | Demographic questions (ie: gender, education and age) | Age > 18 Others: categorical features |
GPREFQ | Genre preference questions (including: action, adventure, comedy, drama, fantasy, history, romance, science fiction, thriller) | 5 likert scale | |
BFIQ | Big five inventory questions | 7 likert scale | |
EHOQ | Eudaimonic and hedonic orientation questions | 7 likert scale | |
SFIQ | Sophisticaiton index questions | 7 likert scale | |
BFT | Big five traits (calculated from BFIQ) | ||
EHO | Eudaimonic and hedonic orientation of users (calculated from EHOQ) | ||
SFI | sophistication indexes including: active engagement, emotion (calculated from SFIQ) | ||
I-F | FPREFQ | Film preference questions | 5 likert scale |
EHPQ | Questions related to eudaimonic and hedonic perceptions of users from films | 7 likert scale | |
EHP | Eudaimonic and hedonic perceptions of users from films (calculated from EHPQ) |
Model | Scaled | Parameters | Tested Values |
---|---|---|---|
Ridge | ✓ | alpha (regularization parameter) | 0, 0.0001, 0.001, 0.01, 0.1, 1, 5, 10 |
Lasso | ✓ | alpha (regularization parameter) | 0, 0.0001, 0.001, 0.01, 0.1, 1, 5, 10 |
SVR | ✓ | Kernel | linear, rbf, poly |
C | 0.001, 0.01, 0.1, 1.0, 10, 100 | ||
gamma | scale, auto | ||
epsilon | 0.001, 0.01, 0.1, 0.2, 0.5, 0.3, 1.0, 2.0, 4.0 | ||
KNeighborsRegressor | ✓ | n_neighbors | 3, 5, 7, 9 |
weights | uniform, distance | ||
algorithm | ball_tree, kd_tree, brute | ||
p | 1, 2 | ||
DecisionTreeRegressor | X | criterion | mae, mse |
splitter | best, random | ||
max_depth | 1, 3, 5, 7, 9, 11, 12 | ||
min_weight_fraction_leaf | 0.1, 0.2, 0.3, 0.4, 0.5 | ||
max_features | auto, log2, sqrt, None | ||
max_leaf_nodes | None, 10, 20, 30, 40, 50, 60, 70, 80, 90 | ||
RandomForestRegressor | X | n_estimators | 1, 3, 5, 7, 9, 11, 13, 15, 17, 20 |
max_features | auto, sqrt | ||
max_depth | 1, 3, 5, 7, 9, 11, 13, 15, 17, 20 | ||
min_samples_split | 2, 3, 4, 5, 10 | ||
min_samples_leaf | 1, 2, 4 | ||
bootstrap | True, False | ||
XGBRegressor | X | max_depth | 3, 4, 5, 6, 7, 8, 9, 10, 11 |
min_child_weight | 1, 2, 3, 4, 5, 6, 7 | ||
eta | 0.001, 0.01, 0.1, 0.2, 0.5, 0.3, 1 | ||
subsample | 0.7, 0.8, 0.9, 1.0 | ||
colsample_bytree | 0.7, 0.8, 0.9, 1.0 | ||
objective | reg:squarederror |
Model | Scaled | Parameters | Tested Values |
---|---|---|---|
Ridge | ✓ | alpha (regularization parameter) | 0, 0.0001, 0.001, 0.01, 0.1, 1, 5, 10 |
SVC | ✓ | Kernel | linear, rbf, poly |
C | 0.001, 0.01, 0.1, 1.0, 10, 100 | ||
gamma | 0.001, 0.01, 0.1, 1 | ||
KNeighborsClassifier | ✓ | n_neighbors | 3, 5, 7, 9 |
weights | uniform, distance | ||
algorithm | ball_tree, kd_tree, brute | ||
p | 1, 2 | ||
DecisionTreeClassifier | X | criterion | gini, entropy |
splitter | best, random | ||
max_depth | 1, 3, 5, 7, 9, 11, 12 | ||
min_weight_fraction_leaf | 0.1, 0.2, 0.3, 0.4, 0.5 | ||
max_features | auto, log2, sqrt, None | ||
max_leaf_nodes | None, 10, 20, 30, 40, 50, 60, 70, 80, 90 | ||
RandomForestClassifier | X | n_estimators | 1, 5, 9, 13, 17, 20 |
max_depth | 1, 5, 9, 13, 17, 20 | ||
min_samples_split | 2, 3, 4, 5, 10 | ||
min_samples_leaf | 1, 2, 4 | ||
bootstrap | True, False | ||
XGBClassifier | X | max_depth | 3, 4, 5, 6, 7, 8, 9, 10, 11 |
min_child_weight | 1, 2, 3, 4, 5, 6, 7 | ||
eta | 0.001, 0.01, 0.1, 0.2, 0.5, 0.3, 1 | ||
subsample | 0.7, 0.8, 0.9, 1.0 | ||
colsample_bytree | 0.7, 0.8, 0.9, 1.0 | ||
objective | reg:squarederror |
ML Algorithm | RMSE (EO) | MAE (EO) | RMSE (HO) | MAE (HO) |
---|---|---|---|---|
Base | 1.09 (0.00) | 0.85 (0.00) | 1.24 (0.00) | 0.97 (0.00) |
Ridge | 0.88 (0.07) | 0.48 (0.07) | 1.02 (0.07) | 0.86 (0.10) |
Lasso | 0.88 (0.06) | 0.48 (0.07) | 1.02 (0.07) | 0.86 (0.11) |
SVR | 0.96 (0.10) | 0.66 (0.11) | 1.10 (0.09) | 1.17 (0.17) |
KNN | 1.07 (0.09) | 1.01 (0.15) | 1.11 (0.08) | 1.14 (0.16) |
Decision Tree | 1.09 (0.10) | 1.06 (0.15) | 1.15 (0.08) | 1.37 (0.21) |
Random Forest | 1.07 (0.09) | 1.00 (0.17) | 1.09 (0.11) | 1.09 (0.19) |
XGBoost | 1.06 (0.15) | 0.98 (0.26) | 1.08 (0.07) | 1.05 (0.13) |
ML Algorithm | RMSE (EO) | MAE (EO) | RMSE (HO) | MAE (HO) |
---|---|---|---|---|
Base | 1.09 (0.00) | 0.85 (0.00) | 1.24 (0.00) | 0.97 (0.00) |
Ridge | 1.02 (0.09) | 0.87 (0.12) | 1.04 (0.08) | 0.94 (0.12) |
Lasso | 1.02 (0.09) | 0.86 (0.12) | 1.05 (0.07) | 0.94 (0.11) |
SVR | 1.04 (0.09) | 0.92 (0.13) | 1.07 (0.09) | 1.01 (0.15) |
KNN | 1.05 (0.10) | 0.95 (0.14) | 1.10 (0.10) | 1.16 (0.18) |
Decision Tree | 1.08 (0.11) | 1.06 (0.18) | 1.10 (0.08) | 1.15 (0.15) |
Random Forest | 1.06 (0.11) | 0.99 (0.15) | 1.10 (0.09) | 1.15 (0.17) |
XGBoost | 1.07 (0.12) | 1.03 (0.19) | 1.09 (0.09) | 1.09 (0.16) |
ML Algorithm | RMSE (EO) | MAE (EO) | RMSE (HO) | MAE (HO) |
---|---|---|---|---|
Base | 1.09 (0.00) | 0.85 (0.00) | 1.24 (0.00) | 0.97 (0.00) |
Ridge | 0.88 (0.04) | 0.48 (0.05) | 1.03 (0.04) | 0.87 (0.07) |
Lasso | 0.87 (0.05) | 0.47 (0.05) | 1.02 (0.05) | 0.86 (0.07) |
SVR | 0.97 (0.07) | 0.69 (0.06) | 1.02 (0.05) | 0.86 (0.08) |
KNN | 1.04 (0.08) | 0.90 (0.10) | 1.05 (0.04) | 0.95 (0.08) |
Decision Tree | 1.01 (0.07) | 0.82 (0.08) | 1.05 (0.06) | 0.93 (0.09) |
Random Forest | 1.01 (0.06) | 0.82 (0.08) | 1.04 (0.07) | 0.90 (0.11) |
XGBoost | 0.98 (0.04) | 0.74 (0.06) | 1.04 (0.07) | 0.89 (0.10) |
ML Algorithm | Accuracy | Precision | Recall | F1 Score | ROC AUC |
---|---|---|---|---|---|
Base | 0.51 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.50 (0.00) |
Ridge | 0.78 (0.08) | 0.75 (0.12) | 0.86 (0.12) | 0.79 (0.08) | 0.89 (0.07) |
SVC | 0.65 (0.07) | 0.66 (0.09) | 0.61 (0.12) | 0.63 (0.08) | 0.71 (0.08) |
KNN | 0.57 (0.11) | 0.57 (0.15) | 0.55 (0.15) | 0.55 (0.13) | 0.60 (0.10) |
Decision Tree | 0.53 (0.11) | 0.53 (0.13) | 0.53 (0.13) | 0.52 (0.12) | 0.52 (0.11) |
Random Forest | 0.62 (0.08) | 0.62 (0.09) | 0.58 (0.09) | 0.60 (0.07) | 0.68 (0.08) |
ML Algorithm | Accuracy | Precision | Recall | F1 Score | ROC AUC |
---|---|---|---|---|---|
Base | 0.56 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.50 (0.00) |
Ridge | 0.66 (0.07) | 0.63 (0.10) | 0.63 (0.11) | 0.62 (0.05) | 0.72 (0.07) |
SVC | 0.65 (0.07) | 0.60 (0.13) | 0.61 (0.15) | 0.60 (0.12) | 0.69 (0.10) |
KNN | 0.59 (0.08) | 0.55 (0.15) | 0.48 (0.08) | 0.51 (0.10) | 0.60 (0.09) |
Decision Tree | 0.53 (0.11) | 0.53 (0.13) | 0.53 (0.13) | 0.52 (0.12) | 0.52 (0.11) |
Random Forest | 0.63 (0.06) | 0.63 (0.15) | 0.52 (0.12) | 0.54 (0.10) | 0.65 (0.06) |
ML Algorithm | Accuracy | Precision | Recall | F1 Score | ROC AUC |
---|---|---|---|---|---|
Base | 0.51 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.50 (0.00) |
Ridge | 0.56 (0.02) | 0.56 (0.04) | 0.54 (0.04) | 0.55 (0.01) | 0.59 (0.02) |
SVC | 0.60 (0.03) | 0.60 (0.03) | 0.58 (0.05) | 0.59 (0.02) | 0.63 (0.03) |
KNN | 0.57 (0.04) | 0.57 (0.04) | 0.55 (0.05) | 0.56 (0.04) | 0.60 (0.04) |
Decision Tree | 0.62 (0.04) | 0.61 (0.05) | 0.61 (0.06) | 0.61 (0.05) | 0.64 (0.06) |
Random Forest | 0.61 (0.06) | 0.60 (0.06) | 0.61 (0.06) | 0.60 (0.05) | 0.66 (0.07) |
ML Algorithm | Accuracy | Precision | Recall | F1 Score | ROC AUC |
---|---|---|---|---|---|
Base | 0.56 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.50 (0.00) |
Ridge | 0.61 (0.03) | 0.56 (0.04) | 0.54 (0.05) | 0.55 (0.03) | 0.65 (0.03) |
SVC | 0.63 (0.02) | 0.60 (0.04) | 0.53 (0.04) | 0.56 (0.03) | 0.69 (0.02) |
KNN | 0.63 (0.03) | 0.59 (0.07) | 0.53 (0.04) | 0.56 (0.04) | 0.67 (0.04) |
Decision Tree | 0.66 (0.04) | 0.63 (0.06) | 0.59 (0.10) | 0.60 (0.06) | 0.72 (0.06) |
Random Forest | 0.65 (0.06) | 0.62 (0.07) | 0.56 (0.07) | 0.59 (0.07) | 0.70 (0.06) |
ML Algorithm | Accuracy | Precision | Recall | F1 Score | ROC AUC |
---|---|---|---|---|---|
Base | 0.51 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.50 (0.00) |
Ridge | 0.77 (0.08) | 0.73 (0.08) | 0.83 (0.13) | 0.77 (0.09) | 0.85 (0.08) |
SVC | 0.55 (0.09) | 0.54 (0.16) | 0.46 (0.17) | 0.49 (0.15) | 0.58 (0.12) |
KNN | 0.50 (0.07) | 0.50 (0.09) | 0.47 (0.09) | 0.48 (0.08) | 0.51 (0.07) |
Decision Tree | 0.55 (0.09) | 0.54 (0.14) | 0.58 (0.11) | 0.55 (0.11) | 0.55 (0.10) |
Random Forest | 0.64 (0.06) | 0.63 (0.10) | 0.64 (0.10) | 0.63 (0.08) | 0.70 (0.08) |
ML Algorithm | Accuracy | Precision | Recall | F1 Score | ROC AUC |
---|---|---|---|---|---|
Base | 0.56 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.50 (0.00) |
Ridge | 0.65 (0.06) | 0.62 (0.14) | 0.60 (0.09) | 0.59 (0.07) | 0.70 (0.07) |
SVC | 0.55 (0.07) | 0.50 (0.15) | 0.46 (0.08) | 0.47 (0.09) | 0.56 (0.08) |
KNN | 0.54 (0.09) | 0.49 (0.16) | 0.49 (0.14) | 0.48 (0.13) | 0.54 (0.10) |
Decision Tree | 0.61 (0.06) | 0.58 (0.16) | 0.59 (0.11) | 0.56 (0.07) | 0.62 (0.07) |
Random Forest | 0.64 (0.07) | 0.61 (0.18) | 0.53 (0.11) | 0.56 (0.12) | 0.68 (0.06) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motamedi, E.; Barile, F.; Tkalčič, M. Prediction of Eudaimonic and Hedonic Orientation of Movie Watchers. Appl. Sci. 2022, 12, 9500. https://doi.org/10.3390/app12199500
Motamedi E, Barile F, Tkalčič M. Prediction of Eudaimonic and Hedonic Orientation of Movie Watchers. Applied Sciences. 2022; 12(19):9500. https://doi.org/10.3390/app12199500
Chicago/Turabian StyleMotamedi, Elham, Francesco Barile, and Marko Tkalčič. 2022. "Prediction of Eudaimonic and Hedonic Orientation of Movie Watchers" Applied Sciences 12, no. 19: 9500. https://doi.org/10.3390/app12199500
APA StyleMotamedi, E., Barile, F., & Tkalčič, M. (2022). Prediction of Eudaimonic and Hedonic Orientation of Movie Watchers. Applied Sciences, 12(19), 9500. https://doi.org/10.3390/app12199500