Research on Authentic Signature Identification Method Integrating Dynamic and Static Features
<p>Sample collection tasks.</p> "> Figure 2
<p>X and Y sites of signature data. (<b>a</b>) Change in X coordinate point; (<b>b</b>) change in Y coordinate point.</p> "> Figure 3
<p>Data preprocessing.</p> "> Figure 4
<p>Offline image preprocessing.</p> "> Figure 5
<p>Heat map.</p> "> Figure 6
<p>Total strokes.</p> "> Figure 7
<p>Pressure value.</p> "> Figure 8
<p>Hang time.</p> "> Figure 9
<p>Writing time.</p> "> Figure 10
<p>Maximum velocity.</p> "> Figure 11
<p>Minimum velocity.</p> "> Figure 12
<p>Aspect ratio. (<b>a</b>) A signature with a certain aspect ratio A; (<b>b</b>) a signature with a certain aspect ratio B.</p> "> Figure 13
<p>Area.</p> "> Figure 14
<p>Graphic center of gravity. (<b>a</b>) A signature with a center of gravity A; (<b>b</b>) a signature with a center of gravity B.</p> "> Figure 15
<p>Spindle direction. (<b>a</b>) Directional angle; (<b>b</b>) signature corresponds to spindle direction.</p> "> Figure 16
<p>Quadrilateral defining signature structure. (<b>a</b>) signature written by P1; (<b>b</b>) signature written by P2; (<b>c</b>) signature written by P3.</p> "> Figure 17
<p>Chain code.</p> "> Figure 18
<p>Signature quadrilateral with different chain codes at the same angle. (<b>a</b>) Signature quadrilateral with chain code 7; (<b>b</b>) signature quadrilateral with chain code 0.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
2. Related Works
3. Materials and Methods
3.1. Sample Collection
3.2. Preprocessing
3.3. Classification Model
4. Results
4.1. Feature Extraction
4.1.1. Dynamic Feature Extraction
- (1)
- Total strokes
- (2)
- Average pressure
- (3)
- Total hang time
- (4)
- Total time
- (5)
- Maximum velocity
- (6)
- Minimum velocity
4.1.2. Static Feature Extraction
- (1)
- Aspect ratio
- (2)
- Area
- (3)
- Center of gravity
- (4)
- Spindle direction
- (5)
- Quadrilateral defining signature structure
- (6)
- Chain code for signature quadrilateral
4.2. Classification Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L. The Application of Weighted DTW on Handwritten Signature Verification. Ph.D. Thesis, Shandong Normal University, Jinan, China, 2011. [Google Scholar]
- Plamondon, R.; Srihari, S.N. Online and off-line handwriting recognition: A comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 63–84. [Google Scholar] [CrossRef] [Green Version]
- Dhieb, T.; Boubaker, H.; Njah, S.; Ben Ayed, M.; Alimi, A.M. A novel biometric system for signature verification based on score level fusion approach. Multimed. Tools Appl. 2022, 81, 7817–7845. [Google Scholar] [CrossRef]
- Ye, J. Online Signature Verification Based on SVM and One-class SVM. Ph.D. Thesis, South China University of Technology, Guangzhou, China, 2016. [Google Scholar]
- Naz, S.; Bibi, K.; Ahmad, R. DeepSignature: Fine-tuned transfer learning based signature verification system. Multimed. Tools Appl. 2022, 81, 38113–38122. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, J.; Hu, H.; Wang, Y. Handwritten Signature Verification Method Basedon Improved Combined Features. Appl. Sci. 2021, 11, 5687. [Google Scholar] [CrossRef]
- Saleem, M.; Kovari, B. Online signature verification using signature down-sampling and signer-dependent sampling frequency. Neural Comput. Appl. 2021, 1–13. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y. A Robust Off-line Writer Identifi-cation Method. Acta Autom. Sin. 2020, 46, 108–116. [Google Scholar]
- Yapıcı, M.M.; Tekerek, A.; Topaloğlu, N. Deep learning-based data augmentation method and signature verification system for offline handwritten signature. Pattern Anal. Appl. 2021, 24, 165–179. [Google Scholar] [CrossRef]
- Jain, A.; Singh, S.K.; Singh, K.P. Handwritten signature verification using shallow convolutional neural net-work. Multimed. Tools Appl. 2020, 79, 19993–20018. [Google Scholar] [CrossRef]
- Okawa, M. Online Signature Verification Using LocallyWeighted Dynamic Time Warping via Multiple Fusion Strategies. IEEE Access 2022, 10, 40806–40817. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Analysis on the Changes of Hand-writing and Electronic Signature. J. Railw. Police Collge 2019, 29, 7. [Google Scholar]
- Zhang, C.; Tong, X.; Wang, J. Review of Handwritten Signature Identification Based on Machine Learning. J. Jiangsu Police Inst. 2021, 36, 6. [Google Scholar]
- Rohilla, S.; Sharma, A.; Singla, R. Role of sub-trajectories in online signature verification. Array 2020, 6, 100028. [Google Scholar] [CrossRef]
- Hameed, M.M.; Ahmad, R.; Kiah, M.L.M.; Murtaza, G. Machine learning-based offlinesignature verification systems: A systematic review. Signal Process. Image Commun. 2021, 93, 116139. [Google Scholar] [CrossRef]
- Li, Q.; Ma, Y.; Zhou, Y.; Zhou, L. Method of Writer Identification Based on Curvature of Strokes. J. Chin. Inf. Processing 2016, 30, 6. [Google Scholar]
- Ding, Y.; Zhan, E.; Zheng, J.; Wang, Y. Offline signature identification based on improved SIFT. Appl. Esearch Comput. 2017, 34, 5. [Google Scholar]
- Guarnera, L.; Farinella, G.M.; Furnari, A.; Salici, A.; Ciampini, C.; Matranga, V.; Battiato, S. GRAPHJ: A forensics tool for handwriting analysis. In Proceedings of the International Conference on Image Analysis and Processing; Springer: Berlin/Heidelberg, Germany, 2017; pp. 591–601. [Google Scholar]
- Guarnera, L.; Farinella, G.M.; Furnari, A.; Salici, A.; Ciampini, C.; Matranga, V.; Battiato, S. Forensic analysis of handwritten documents with GRAPHJ. J. Electron. Imaging 2018, 27, 051230. [Google Scholar] [CrossRef]
- Huang, F.; Hao, H.; Chen, W.; Sun, J.; Shi, W.; Zhang, L.; Wnag, Z. Research on Electronic Signature Handwriting Recognition Based on Dynamic Features. Mod. Comput. 2020, 5, 84–88. [Google Scholar] [CrossRef]
- Bhowal, P.; Banerjee, D.; Malakar, S.; Sarkar, R. A two-tier ensemble approachfor writer dependent online signature verification. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 21–40. [Google Scholar] [CrossRef]
- Yelmati, S.R.; Rao, J.H. Online Signature Verification Using Fully Connected Deep Neural Networks. Int. J. Eng. Manuf. 2021, 11, 41–47. [Google Scholar]
- Wu, K. Signatures Verification Based on Texture Feature and Depth Feature. Ph.D. Thesis, Chinese Academy of Sciences, Beijing, China, 2020. [Google Scholar]
- Batool, F.E.; Attique, M.; Sharif, M.; Javed, K.; Nazir, M.; Abbasi, A.A.; Iqbal, Z.; Riaz, N. Offline signature verification system: A novel techniqueof fusion of GLCM and geometric features using SVM. Multimed. Toolsand Appl. 2020, 1–20. [Google Scholar] [CrossRef]
- Zhang, B. Off-line signature verification and identification by pyramid histogram of oriented gradients. Int. J. Intell. Comput. Cybern. 2010, 3, 611–630. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, A.J.; Phillips, P.J.; Weimer, S.; Roark, D.A.; Ayyad, J.; Barwick, R.; Dunlop, J. Recognizing people from dynamic and static faces and bodies: Dissecting identity with a fusion approach. Vis. Res. 2011, 51, 74–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, L.; Xie, H.; Wang, Y.; Zhu, H.; Bie, Z. Predicting typhoon-induced transmission line outages with coordination of static and dynamic data. Int. J. Electr. Power Energy Syst. 2022, 142, 108296. [Google Scholar] [CrossRef]
- Luo, J.; Liu, L.; Xu, W.; Yin, Q.; Lin, C.; Liu, H.; Lu, W. Stereo super-resolution images detection based on multi-scale feature extraction and hierarchical feature fusion. Gene Expr. Patterns 2022, 45, 119266. [Google Scholar] [CrossRef]
Simple Signature | General Signature | Complex Signature | |
---|---|---|---|
P1 | |||
P2 | |||
P3 |
Simple Genuine Signature | General Genuine Signature | Complex Genuine Signature |
---|---|---|
Simple Imitation | General Imitation | Complex Imitation | |
---|---|---|---|
P1 | |||
P2 | |||
P3 |
Raw Data | Processed Data |
---|---|
X | StrokeSum |
Y | HangTime |
Pressure | StrokeTime |
State | StrokeLength |
StrokeNum | Velocity |
Timestamp | Acceleration |
Pressure |
Dynamic Feature | Static Feature |
---|---|
StrokeSum | AspectRatio |
AveragePressure | Area |
HangTime | Center of Gravity |
StrokeTime | SpindleDirection |
SpeedMax | Quadrilateral defining Signature structure |
SpeedMin | ChainCode |
Number of Writers | Simple Forged Signature | Skilled Forged Signature | ||||
---|---|---|---|---|---|---|
Simple Signature | General Signature | Complex Signature | Simple Imitation | General Imitation | Complex Imitation | |
2 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
3 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
4 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
5 | 94.3 | 100.0 | 100.0 | 97.1 | 97.1 | 100.0 |
6 | 90.5 | 100.0 | 97.6 | 97.6 | 97.6 | 97.6 |
7 | 93.9 | 98.0 | 100.0 | 98.0 | 98.0 | 91.8 |
8 | 91.1 | 96.4 | 98.2 | 98.2 | 94.8 | 91.1 |
9 | 92.1 | 96.8 | 93.7 | 96.8 | 95.2 | 93.7 |
10 | 92.9 | 94.3 | 91.4 | 97.1 | 95.7 | 90.0 |
11 | 84.4 | 96.1 | 94.8 | 98.7 | 96.1 | 92.2 |
12 | 84.5 | 98.8 | 92.9 | 95.2 | 95.2 | 94.0 |
13 | 90.1 | 96.7 | 94.5 | 90.1 | 94.5 | 91.2 |
14 | 83.7 | 92.9 | 91.8 | 89.8 | 93.9 | 85.7 |
15 | 86.7 | 97.1 | 90.5 | 88.6 | 93.3 | 86.7 |
Simple Forged Signature | Skilled Forged Signature | |||||
---|---|---|---|---|---|---|
Simple Signature | General Signature | Complex Signature | Simple Imitation | General Imitation | Complex Imitation | |
KNN | 73.3 | 86.7 | 95.6 | 80.0 | 75.6 | 82.2 |
DA | 75.6 | 91.1 | 100.0 | 93.3 | 77.8 | 93.3 |
RF | 80.0 | 88.9 | 95.6 | 88.9 | 75.6 | 84.4 |
SVM | 75.6 | 77.8 | 95.6 | 73.3 | 75.6 | 75.6 |
Simple Forged Signature | Skilled Forged Signature | |||||
---|---|---|---|---|---|---|
Simple Signature | General Signature | Complex Signature | Simple Imitation | General Imitation | Complex Imitation | |
CNN | 90.0 | 90.0 | 96.7 | 96.7 | 83.3 | 93.0 |
CNN + Att | 96.7 | 96.7 | 96.7 | 93.3 | 90.0 | 100.0 |
LSTM | 95.7 | 96.7 | 96.7 | 90.0 | 90.0 | 96.7 |
LSTM + Att | 95.7 | 96.7 | 96.7 | 93.3 | 80.0 | 96.7 |
CNN-LSTM | 83.3 | 90.0 | 86.7 | 90.0 | 83.3 | 93.3 |
CNN-LSTM + Att | 83.3 | 93.3 | 93.3 | 100.0 | 83.3 | 96.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Qi, H.; Wu, X.; Zhang, C.; Tang, Q. Research on Authentic Signature Identification Method Integrating Dynamic and Static Features. Appl. Sci. 2022, 12, 9904. https://doi.org/10.3390/app12199904
Lu J, Qi H, Wu X, Zhang C, Tang Q. Research on Authentic Signature Identification Method Integrating Dynamic and Static Features. Applied Sciences. 2022; 12(19):9904. https://doi.org/10.3390/app12199904
Chicago/Turabian StyleLu, Jiaxin, Hengnian Qi, Xiaoping Wu, Chu Zhang, and Qizhe Tang. 2022. "Research on Authentic Signature Identification Method Integrating Dynamic and Static Features" Applied Sciences 12, no. 19: 9904. https://doi.org/10.3390/app12199904
APA StyleLu, J., Qi, H., Wu, X., Zhang, C., & Tang, Q. (2022). Research on Authentic Signature Identification Method Integrating Dynamic and Static Features. Applied Sciences, 12(19), 9904. https://doi.org/10.3390/app12199904