Impact of Spatial Evolution of Cropland Pattern on Cropland Suitability in Black Soil Region of Northeast China, 1990–2020
<p>Location (<b>a</b>), administrative subdivisions (<b>b</b>), and soil types (<b>c</b>) in the black soil region of northeast China (BSRNC).</p> "> Figure 2
<p>Spatial changes in cropland gravity center.</p> "> Figure 3
<p>Hotspots for cropland change from 1990 to 2020.</p> "> Figure 4
<p>Spatial distribution of cultivable land in the BSRNC.</p> "> Figure 5
<p>Relationships between actual crop yields and simulated cultivability scores for different cities in the BSRNC.</p> "> Figure 6
<p>Suitability of cropland resources in the BSRNC (<b>a</b>) and changes in single-factor suitability (<b>b</b>).</p> "> Figure 7
<p>Cropland cultivation levels across years (<b>a</b>) and factors contributing to unsuitability for cultivation in the BSRNC (<b>b</b>).</p> "> Figure 8
<p>Spatial distribution of cropland reserves in the BSRNC (<b>a</b>) and coupling of reserves with current land use across various cultivability levels (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Source and Processing
3. Methodology
3.1. Cropland Gravity Center Model
3.2. Ecological Niche Model
3.2.1. Ecological Niche Connotations of Cultivable Land
3.2.2. Selection of Factors for Cultivable Land Evaluation
3.2.3. Evaluation Results’ Verification
4. Results
4.1. Evolution of Spatial Pattern of Cropland in the BSRNC from 1990 to 2020
4.1.1. Changes in Cropland Quantity
4.1.2. Spatial Changes in Cropland Pattern
4.2. Land Cultivability Evaluation Results of the BSRNC
4.2.1. Cultivable Land in the BSRNC
4.2.2. Assessment of the Land Cultivability Model
4.3. Changes in Cropland Suitability
5. Discussion
5.1. Comparison with Existing Studies
5.2. Suggestions for Protecting the Cropland in the BSRNC
5.3. Uncertainty Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO; IFAD; UNICEF; WFP; WHO. In Brief to the State of Food Security and Nutrition in the World 2020; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Indhanu, N.; Chalermyanont, T.; Chub-Uppakarn, T. Spatial assessment of land use and land cover change impacts on groundwater recharge and groundwater level: A case study of the hat Yai basin. J. Hydrol. Reg. Stud. 2024, 57, 102097. [Google Scholar] [CrossRef]
- Sayre, R.; Frye, C.; Breyer, S.; Roehrdanz, P.R.; Elsen, P.R.; Butler, K.; Brown, C.; Cress, J.; Karagulle, D.; Martin, M.; et al. Potential 2050 distributions of world terrestrial ecosystems from projections of changes in world climate regions and global land cover. Glob. Ecol. Conserv. 2024, 57, e03370. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Zhu, G. Spatio-temporal evaluation of multi-scales cultivated land system resilience in black soil region from 2000 to 2019: A case study of Liaoning province, northeast China. Chin. Geogr. Sci. 2023, 34, 168–180. [Google Scholar] [CrossRef]
- Farnaz Nuthammachot, N.; Ali, M.Z. Comparative study of multiple algorithms classification for land use and land cover change detection and its impact on local climate of Mardan district, Pakistan. Environ. Chall. 2024, 18, 101069. [Google Scholar] [CrossRef]
- Lotfi, P.; Ahmadi Nadoushan, M.; Besalatpour, A. Cropland abandonment in a shrinking agricultural landscape: Patch-level measurement of different cropland fragmentation patterns in central Iran. Appl. Geogr. 2023, 158, 103023. [Google Scholar] [CrossRef]
- Diffendorfer, J.E.; Sergi, B.; Lopez, A.; Williams, T.; Gleason, M.; Ancona, Z.; Cole, W. The interplay of future solar energy, land cover change, and their projected impacts on natural lands and croplands in the us. Sci. Total Environ. 2024, 947, 173872. [Google Scholar] [CrossRef]
- Vieira, D.C.; Sanches, I.D.; Montibeller, B.; Prudente VH, R.; Hansen, M.C.; Baggett, A.; Adami, M. Cropland expansion, intensification, and reduction in Mato Grosso state, Brazil, between the crop years 2000/01 to 2017/18. Remote Sens. Appl. Soc. Environ. 2022, 28, 100841. [Google Scholar] [CrossRef]
- Huang, H.; Wen, L.; Kong, X.; Chen, W.; Sun, X. The Impact of Spatial Pattern Evolution of Cultivated Land on Cultivated Land Suitability in China and Its Policy Implication. China Land Sci. 2021, 35, 61–70. [Google Scholar]
- Li, X.; Wu, K.; Hao, S.; Zhang, Y.; Zhao, R.; Ma, J. Mapping cropland suitability in China using optimized MaxEnt model. Field Crops Res. 2023, 302, 109064. [Google Scholar] [CrossRef]
- Zhou, Y. Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019. Land Use Policy 2023, 125, 106496. [Google Scholar] [CrossRef]
- Zhang, R.; Du, G.; Zhang, S. Spatiotemporal changes and the driving factors of cultivated land resources of the typical black soil region in Northeast China from 1986 to 2020. Resour. Sci. 2023, 45, 939–950. [Google Scholar] [CrossRef]
- Akpoti, K.; Kabo-Bah, A.T.; Zwart, S.J. Review—Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis. Agric. Syst. 2019, 173, 172–208. [Google Scholar] [CrossRef]
- Steiner, F.; Dunford, R.; Dosdall, N. The use of the agricultural land evaluation and site assessment system in the united states. Landsc. Urban Plan. 1987, 14, 183–199. [Google Scholar] [CrossRef]
- FAO. A Framework for Land Evaluation; Food and Agriculture Organization of the United Nations: Rome, Italy, 1976. [Google Scholar]
- Shi, Y. Land resource classification system of the three 1:1,000,000 land resource maps in Northeast China. Nat. Resour. 1979, 01, 77–90. [Google Scholar]
- Pilevar, A.R.; Matinfar, H.R.; Sohrabi, A.; Sarmadian, F. Integrated fuzzy, AHP and GIS techniques for land suitability assessment in semi-arid regions for wheat and maize farming. Ecol. Indic. 2020, 110, 105887. [Google Scholar] [CrossRef]
- Ramamurthy, V.; Reddy, G.P.O.; Kumar, N. Assessment of land suitability for maize (Zea mays L) in semi-arid ecosystem of southern India using integrated AHP and GIS approach. Comput. Electron. Agric. 2020, 179, 105806. [Google Scholar] [CrossRef]
- Agrawal, N.; Govil, H.; Kumar, T. Agricultural land suitability classification and crop suggestion using machine learning and spatial multicriteria decision analysis in semi-arid ecosystem. Environ. Dev. Sustain. 2024, 1–38. [Google Scholar] [CrossRef]
- Budak, M.; Kılıç, M.; Günal, H.; Çelik, İ.; Sırrı, M. Land suitability assessment for rapeseed potential cultivation in upper Tigris basin of Turkiye comparing fuzzy and boolean logic. Ind. Crops Prod. 2024, 208, 117806. [Google Scholar] [CrossRef]
- Choudhary, K.; Boori, M.S.; Shi, W.; Valiev, A.; Kupriyanov, A. Agricultural land suitability assessment for sustainable development using remote sensing techniques with analytic hierarchy process. Remote Sens. Appl. Soc. Environ. 2023, 32, 101051. [Google Scholar] [CrossRef]
- Sadeghfam, S.; Rahmani, M.S.; Moazamnia, M.; Morshedloo, M.R. Mapping climate suitability index for rainfed cultivation of medicinal plants by developing an ai-based probabilistic framework. Sci. Rep. 2024, 14, 20413. [Google Scholar] [CrossRef]
- Shevchenko, V.; Lukashevich, A.; Taniushkina, D.; Bulkin, A.; Grinis, R.; Kovalev, K. Climate change impact on agricultural land suitability: An interpretable machine learning-based Eurasia case study. IEEE Access 2024, 12, 15748–15763. [Google Scholar] [CrossRef]
- Wang, Y.C.; Lu, Y.H.; Chiang, L.C.; Hsu, C.C. Assessing crop suitability of rice, wheat, and maize on agricultural lands in Taiwan. Nat. Resour. Res. 2023, 32, 813–834. [Google Scholar] [CrossRef]
- Yates, K.L.; Bouchet, P.J.; Caley, M.J.; Mengersen, K.; Randin, C.F.; Parnell, S.; Fielding, A.H.; Bamford, A.J.; Ban, S.; Barbosa, A.M.; et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 2018, 33, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Citores, L.; Ibaibarriaga, L.; Lee, D.J.; Brewer, M.J.; Santos MChust, G. Modelling species presence–absence in the ecological niche theory framework using shape-constrained generalized additive models. Ecol. Model. 2020, 418, 108926. [Google Scholar] [CrossRef]
- Chen, H.; Yang, R.; Ye, Y. Cultivability evaluation and conservation strategies of land resources in China. Trans. Chin. Soc. Agric. Eng. 2023, 39, 192–200. [Google Scholar]
- Sun, H.; Yang, Z.; Li, X.; Hang, Y.; Gao, M.; Lu, X.; Yang, Y.; Meng, X.; Zhu, L. Assessment of the cultivated land quality in the black soil region of northeast China based on the field scale. Environ. Monit. Assess. 2023, 195, 1508. [Google Scholar] [CrossRef]
- Li, J.; He, H.; Zeng, Q.; Chen, L.; Sun, R. A chinese soil conservation dataset preventing soil water erosion from 1992 to 2019. Sci. Data 2023, 10, 319. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.; Zhao, Y.; Li, D.; Yang, J.L.; Song, X.; Shi, Z.; Zhu, A.X.; Zhang, G.L. Mapping high resolution national soil information grids of China. Sci. Bull. 2022, 67, 328–340. [Google Scholar] [CrossRef]
- Lu, D.; Wang, Z.; Su, K.; Zhou, Y.; Li, X.; Lin, A. Understanding the impact of cultivated land-use changes on China’s grain production potential and policy implications: A perspective of non-agriculturalization, non-grainization, and marginalization. J. Clean. Prod. 2024, 436, 140647. [Google Scholar] [CrossRef]
- Melo-Merino, S.M.; Reyes-Bonilla, H.; Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. 2020, 415, 108837. [Google Scholar] [CrossRef]
- Xu, Y.; Pei, J.; Li, S.; Zhou, H.; Wang, J.; Zhang, J. Main Characteristics and Utilization Countermeasures for Black Soils in Different Regions of Northeast China. Chin. J. Soil Sci. 2023, 54, 495–504. [Google Scholar]
- TD/T 1007-2003; Standards of Surveying and Evaluating Reserved Land Resource for Cultivation. Ministry of Land and Resources of the People’s Republic of China: Beijing, China, 2003.
- SL 190-2007; Standards for Classification and Gradation of Soil Erosion. Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2008.
- GB/T 28405-2012; Regulation for Gradation on Agriculture Land Quality. Ministry of Land and Resources of the Peo-ple’s Republic of China: Beijing, China, 2012.
- GB/T 33469-2016; Cultivated Land Quality Grade. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2016.
- Van Ranst, E.; Tang, H.; Groenemam, R.; Sinthurahat, S. Application of fuzzy logic to land suitability for rubber production in peninsular Thailand. Geoderma 1996, 70, 1–19. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Verdoodt, A.; Tran, V.Y.; Delbecque, N.; Tran, T.C.; Ranst, E.V. Design of a GIS and multi-criteria based land evaluation procedure for sustainable land-use planning at the regional level. Agric. Ecosyst. Environ. 2015, 200, 1–11. [Google Scholar] [CrossRef]
- Jia, G.; Hu, W.; Zhang, B.; Li, G.; Shen, S.; Gao, Z.; Li, Y. Assessing impacts of the ecological retreat project on water conservation in the yellow river basin. Sci. Total Environ. 2022, 828, 154483. [Google Scholar] [CrossRef]
- Qi, W.; Liu, S.; Jin, F. Calculation and Spatial Evolution of Population Loss in Northeast China. Sci. Geogr. Sin. 2017, 37, 1795–1804. [Google Scholar]
- Li, Z.; Lv, X.; Yang, Y.; Chen, X.; Niu, S. Evolution Process and Characteristics of Protection Policy for Black Soils in China. Chin. J. Soil Sci. 2022, 53, 998–1008. [Google Scholar]
- He, C.; Niu, J.R.; Xu, C.T.; Han, S.W.; Bai, W.; Song, Q.L.; Dang, Y.P.; Zhang, H.L. Effect of conservation tillage on crop yield and soil organic carbon in northeast China: A meta-analysis. Soil Use Manag. 2022, 38, 1146–1161. [Google Scholar] [CrossRef]
- Hearnshaw EJ, S.; Hughey KF, D. A novel tolerance range approach for the quantitative assessment of ecosystems. Sci. Total Environ. 2012, 420, 13–23. [Google Scholar] [CrossRef]
- Caguazango, J.C. Ecological models of gastric microbiota dysbiosis: Helicobacter pylori and gastric carcinogenesis. Med. Microecol. 2020, 3, 100010. [Google Scholar] [CrossRef]
- Dong, F.; Zhang, Z.; Jiang, F.; Wang, J.; Wang, Q.; Li, L.; Peng, X. Spatial distribution of the buried depth and thickness of albic soil albic layer in Sanjiang plain and its influencing factors. Acta Pedol. Sin. 2024, 1–15. Available online: https://link.cnki.net/urlid/32.1119.P.20240816.1927.006 (accessed on 1 December 2024).
- Bagherzadeh, A.; Gholizadeh, A. Modeling land suitability evaluation for wheat production by parametric and Topsis approaches using GIS, northeast of Iran. Model. Earth Syst. Environ. 2016, 2, 1–11. [Google Scholar] [CrossRef]
- Motuma, M.; Suryabhagavan, K.V.; Balakrishnan, M. Land suitability analysis for wheat and sorghum crops in Wogdie District, South Wollo, Ethiopia, using geospatial tools. Appl. Geomat. 2016, 8, 57–66. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, T.; Wang, S.; Wang, Z. Soil PH and C/N ratio determines spatial variations in soil microbial communities and enzymatic activities of the agricultural ecosystems in Northeast China: Jilin province case. Appl. Soil Ecol. 2020, 155, 103629. [Google Scholar] [CrossRef]
- Wang, M.; Liu, X.; Liu, Z.; Wang, F.; Li, X.; Hou, G.; Zhao, S. Evaluation and driving force analysis of cultivated land quality in black soil region of Northeast China. Chin. Geogr. Sci. 2023, 33, 601–615. [Google Scholar] [CrossRef]
- Guo, L.; Yang, Y.; Zhao, Y.; Li, Y.; Sui, Y.; Tang, C.; Jin, J.; Liu, X. Reducing topsoil depth decreases the yield and nutrient uptake of maize and soybean grown in a glacial till. Land Degrad. Dev. 2021, 32, 2849–2860. [Google Scholar] [CrossRef]
- AL-Taani, A.; Al-Husban, Y.; Farhan, I. Land suitability evaluation for agricultural use using gis and remote sensing techniques: The case study of ma’an governorate, jordan. Egypt. J. Remote Sens. Space Sci. 2021, 24, 109–117. [Google Scholar] [CrossRef]
- Schiefer, J.; Lair, G.J.; Blum WE, H. Potential and limits of land and soil for sustainable intensification of European agriculture. Agric. Ecosyst. Environ. 2016, 230, 283–293. [Google Scholar] [CrossRef]
- Yao, M.; Shao, D.; Lv, C.; An, R.; Gu, W.; Zhou, C. Evaluation of arable land suitability based on the suitability function—A case study of the Qinghai-Tibet plateau. Sci. Total Environ. 2021, 787, 147414. [Google Scholar] [CrossRef]
- Mugiyo, H.; Chimonyo VG, P.; Sibanda, M.; Kunz, R.; Masemola, C.R.; Modi, A.T.; Mabhaudhi, T. Evaluation of land suitability methods with reference to neglected and underutilised crop species: A scoping review. Land 2021, 10, 125. [Google Scholar] [CrossRef]
- Kılıc, O.M.; Ersayın, K.; Gunal, H.; Khalofah, A.; Alsubeie, M.S. Combination of fuzzy-AHP and GIS techniques in land suitability assessment for wheat (Triticum aestivum) cultivation. Saudi J. Biol. Sci. 2022, 29, 2634–2644. [Google Scholar] [CrossRef]
- Seyedmohammadi, J.; Sarmadian, F.; Jafarzadeh, A.A.; McDowell, R.W. Development of a model using matter element, AHP and GIS techniques to assess the suitability of land for agriculture. Geoderma 2019, 352, 80–95. [Google Scholar] [CrossRef]
- Gong, L.; Li, X.; Wu, S.; Jiang, L. Prediction of potential distribution of soybean in the frigid region in China with maxent modeling. Ecol. Inform. 2022, 72, 101834. [Google Scholar] [CrossRef]
- He, J.; Ran, D.; Tan, D.; Liao, X. Spatiotemporal evolution of cropland in northeast China’s black soil region over the past 40 years at the county scale. Front. Sustain. Food Syst. 2024, 7, 1332595. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, F.; Wu, H.; Zhang, G.L. Developing a national black soil map of China through machine learning classification. CATENA 2024, 240, 107993. [Google Scholar] [CrossRef]
- Chen, W.; Ye, X.; Li, J.; Fan, X.; Liu, Q.; Dong, W. Analyzing requisition–compensation balance of farmland policy in China through telecoupling: A case study in the middle reaches of Yangtze river urban agglomerations. Land Use Policy 2019, 83, 134–146. [Google Scholar] [CrossRef]
- Liu, C.; Song, C.; Ye, S.; Cheng, F.; Zhang, L.; Li, C. Estimate provincial-level effectiveness of the arable land requisition-compensation balance policy in mainland China in the last 20 years. Land Use Policy 2023, 131, 106733. [Google Scholar] [CrossRef]
- Cottet, M.; Piégay, H.; Bornette, G. Does human perception of wetland aesthetics and healthiness relate to ecological functioning? J. Environ. Manag. 2013, 128, 1012–1022. [Google Scholar] [CrossRef]
- Bykowa, E.; Banikevich, T.; Zalivatskaya, N.; Pirogova, O. Modeling the cadastral value of land plots of gardening and horticultural non-profit partnerships taking into account the influence of local factors of the territory. Land 2024, 13, 1004. [Google Scholar] [CrossRef]
- Jaiswal, P.; Pipralia, S.; Nigam, P. Factors affecting urban land valuation and practices in India. PC Anderson 2019, 43, 190–195. [Google Scholar]
- Magesan, M.; Govindharaj, Y. An evaluation of the impact of urban land prices and housing development in Villupuram town. Int. J. Res. Anal. Rev. 2023, 9, 281–290. [Google Scholar]
- Sperandio, H.V.; De Morais, M.S.; De Jesus França, L.C.; Mucida, D.P.; Santana, R.C.; da Silva, R.S.; Rodrigues, C.R.; de Faria, B.L.; de Azevedo, M.L.; Gorgens, E.B. Land suitability modeling integrating geospatial data and artificial intelligence. Agric. Syst. 2025, 223, 104197. [Google Scholar] [CrossRef]
Data | Time Resolution | Space Resolution | Format | Data Source |
---|---|---|---|---|
≥10 °C active accumulated temperature (AT) | 1971–2000 | 1 km | Raster | http://www.nesdc.org.cn (accessed on 16 March 2020) |
Annual precipitation (AP) | 1980–2018 | 1 km | Raster | www.gis5g.com (accessed on 16 June 2024) |
ASTER GDEM | \ | 30 m | Raster | http://www.gscloud.cn (accessed on 16 June 2024) |
Potential annual soil erosion (SEp) | 1999–2019 | 1 km | Raster | Li et al. (2023) [29] |
Thickness | 2010–2018 | 1 km | Raster | http://www.geodata.cn (accessed on 22 June 2024) |
Soil organic carbon | 2010–2018 | 1 km | Raster | |
Soil pH | 2010–2018 | 1 km | Raster | |
Soil texture | 2010–2018 | 1 km | Raster | |
Land use | 1990, 2000, 2010, 2020 | 30 m | Raster | www.resdc.cn (accessed on 29 december 2023) |
Indicators | Indicator Types | Optimum Value | Limit Value | Basis for Parameterization |
---|---|---|---|---|
≥10 °C active accumulated temperature (AT) | I | ≥3200 °C | ≤1800 °C | Standards of surveying and evaluating reserved land resource for cultivation [34] |
Annual precipitation (AP) | I | ≥650 mm | ≤350 mm | |
Potential annual soil erosion (SEp) | III | 50 t·ha−1·a−1 | 300 t·ha−1·a−1 | Standards for classification and gradation of soil erosion [35] |
Slope | III | ≤2° | >25° | Regulation for gradation on agriculture land quality (standard No. GB/T 28405-2012); [36] Cultivated land quality grade (standard No. GB/T 33469-2016) [37] |
Soil thickness | I | ≥150 cm | ≤60 cm | |
Soil texture | I | Slit, sandy loam, loam, silt loam, sandy clay loam, clay loam, silty clay loam | Sand | |
Soil pH | II | 6.0 ≤ pH < 7.9 | pH < 4.5, pH ≥ 9.5 | |
Soil organic matter (SOM) | I | ≥4% | ≤0.6% |
Indicators | Indicator classification | Score |
---|---|---|
Soil texture | Slit, sandy loam, loam, silt loam, sandy clay loam, clay loam, silty clay loam | 100 |
Clay, silty clay, sandy clay | 80 | |
Loamy sand | 60 | |
sand | 0 | |
Soil pH | 6.0 ≤ pH < 7.9 | 100 |
5.5 ≤ pH < 6.0, 7.9 ≤ pH < 8.5 | 90 | |
5.0 ≤ pH < 5.5, 8.5 ≤ pH < 9.0 | 80 | |
4.5 ≤ pH < 5.0, 9.0 ≤ pH < 9.5 | 60 | |
pH < 4.5, pH ≥ 9.5 | 0 |
1990 | 2000 | 2010 | 2020 | 1990–2020 | |
---|---|---|---|---|---|
Cropland area/103 km2 | 446.62 | 456.60 | 444.81 | 453.78 | — |
Area proportion/% | 35.93 | 36.74 | 35.79 | 36.51 | — |
Amount of area change/103 km2 | — | 9.97 | −11.78 | 8.97 | 7.16 |
Rate of area change/% | — | 2.23 | −2.58 | 2.02 | 1.60 |
Type Regions | Cultivability Score | AT10 | AP | SEp | Slope | Texture | Thickness | pH | SOM |
---|---|---|---|---|---|---|---|---|---|
SNP | 83.06 | 83.44 | 79.58 | 94.55 | 90.88 | 99.79 | 90.37 | 96.82 | 71.24 |
SJP | 75.23 | 80.43 | 92.09 | 79.50 | 85.87 | 94.24 | 67.85 | 99.43 | 94.18 |
LHP | 58.24 | 99.59 | 86.90 | 61.75 | 83.24 | 99.27 | 81.29 | 99.80 | 33.80 |
WS | 43.29 | 75.12 | 57.09 | 78.33 | 84.63 | 89.85 | 71.92 | 95.62 | 44.63 |
CMEL | 36.97 | 75.32 | 97.79 | 37.02 | 67.43 | 99.57 | 54.48 | 95.99 | 82.33 |
DXXAL | 22.54 | 23.54 | 81.15 | 71.20 | 76.22 | 99.76 | 45.35 | 93.82 | 96.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, L.; Wu, K. Impact of Spatial Evolution of Cropland Pattern on Cropland Suitability in Black Soil Region of Northeast China, 1990–2020. Agronomy 2025, 15, 172. https://doi.org/10.3390/agronomy15010172
Kang L, Wu K. Impact of Spatial Evolution of Cropland Pattern on Cropland Suitability in Black Soil Region of Northeast China, 1990–2020. Agronomy. 2025; 15(1):172. https://doi.org/10.3390/agronomy15010172
Chicago/Turabian StyleKang, Long, and Kening Wu. 2025. "Impact of Spatial Evolution of Cropland Pattern on Cropland Suitability in Black Soil Region of Northeast China, 1990–2020" Agronomy 15, no. 1: 172. https://doi.org/10.3390/agronomy15010172
APA StyleKang, L., & Wu, K. (2025). Impact of Spatial Evolution of Cropland Pattern on Cropland Suitability in Black Soil Region of Northeast China, 1990–2020. Agronomy, 15(1), 172. https://doi.org/10.3390/agronomy15010172