Land Suitability Assessment and Crop Water Requirements for Twenty Selected Crops in an Arid Land Environment
<p>Location map of the study area.</p> "> Figure 2
<p>Topography and geology of the study area: (<b>a</b>) digital elevation model (DEM), (<b>b</b>) slope map, (<b>c</b>) aspect map, and (<b>d</b>) geological map.</p> "> Figure 3
<p>Soil sampling sites across the study area.</p> "> Figure 4
<p>Spatial distribution maps of soil properties: (<b>a</b>) soil depth, (<b>b</b>) sand fraction, (<b>c</b>) cation exchange capacity (CEC), and (<b>d</b>) CaCO<sub>3</sub>.</p> "> Figure 5
<p>Spatial distribution maps of soil properties: (<b>a</b>) soil pH, (<b>b</b>) soil salinity, (<b>c</b>) exchangeable sodium percentage (ESP), and (<b>d</b>) sodium adsorption ratio (SAR).</p> "> Figure 6
<p>Spatial distribution map of land capability classes.</p> "> Figure 7
<p>Spatial distribution maps of land suitability classes for the selected field crops.</p> "> Figure 8
<p>Spatial distribution maps of land suitability classes for the selected fruit crops.</p> "> Figure 9
<p>Spatial distribution maps of land suitability classes for the selected oil crops.</p> "> Figure 10
<p>Spatial distribution maps of land suitability classes for the selected vegetable crops.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Field Studies, Soil Sampling, and Laboratory Analyses
2.3. Statistical Analysis
2.4. Land Evaluation Approaches
2.4.1. Land Capability Assessment
2.4.2. Land Suitability Assessment
2.5. Mapping Soil Properties, Capabilities, and Suitability Classes
2.6. Crop Water Requirements
3. Results
3.1. Soil Characterization
3.2. Land Evaluation
3.2.1. Land Capability Assessment
3.2.2. Land Suitability Assessment for the Selected Crops
Field Crops
Fruit Crops
Oil Crops
Vegetable Crops
3.3. Crop Water Requirements
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Collins, M.G.; Steiner, F.R.; Rushman, M.J. Land-Use Suitability Analysis in the United States: Historical Development and Promising Technological Achievements. Environ. Manag. 2001, 28, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Malczewski, J. GIS-based land-use suitability analysis: A critical overview. Prog. Plan. 2004, 62, 3–65. [Google Scholar] [CrossRef]
- FAO. Land Evaluation: Towards a Revised Framework; Food Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Sys, C.; Van Ranst, E.; Debaveye, J. Land Evaluation, Part I. Principles in Land Evaluation and Crop Production Calculations. In General Administration for Development Cooperation; General Administration for Development Cooperation: Brussels, Belgium, 1991; pp. 40–80. [Google Scholar]
- FAO. Guidelines: Land Evaluation for Irrigated Agriculture; FAO Soils Bulletin 55; FAO: Rome, Italy, 1985. [Google Scholar]
- Sys, C.; Van Ranst, E.; Debaveye, J.; Beernaert, F. Land Evaluation. Part III: Crop Requirements; Agricultural Publications No. 7; GADC: Brussels, Belgium, 1993; 191p. [Google Scholar]
- FAO. A Framework for Land Evaluation; Soils Bulletin: 32; Food and Agriculture Organization of the United Nations: Rome, Italy, 1976. [Google Scholar]
- Alnaimy, M.A.; Shahin, S.A.; Afifi, A.A.; Ewees, A.A.; Junakova, N.; Balintova, M.; Abd Elaziz, M. Spatio Prediction of Soil Capability Modeled with Modified RVFL Using Aptenodytes Forsteri Optimization and Digital Soil Assessment Technique. Sustainability 2022, 14, 14996. [Google Scholar] [CrossRef]
- Assefa, T.; Jha, M.; Reyes, M.; Srinivasan, R.; Worqlul, A.W. Assessment of Suitable Areas for Home Gardens for Irrigation Potential, Water Availability, and Water-Lifting Technologies. Water 2018, 10, 495. [Google Scholar] [CrossRef]
- Baroudy, A.A.E.; Ali, A.M.; Mohamed, E.S.; Moghanm, F.S.; Shokr, M.S.; Savin, I.; Poddubsky, A.; Ding, Z.; Kheir, A.M.S.; Aldosari, A.A.; et al. Modeling Land Suitability for Rice Crop Using Remote Sensing and Soil Quality Indicators: The Case Study of the Nile Delta. Sustainability 2020, 12, 9653. [Google Scholar] [CrossRef]
- Cui, X.; Zhou, T.; Xiong, X.; Xiong, J.; Zhang, J.; Jiang, Y. Farmland Suitability Evaluation Oriented by Non-Agriculturalization Sensitivity: A Case Study of Hubei Province, China. Land 2022, 11, 488. [Google Scholar] [CrossRef]
- Hagos, Y.G.; Andualem, T.G.; Yibeltal, M.; Malede, D.A.; Melesse, A.M.; Teshome, F.T.; Bayabil, H.K.; Kebede, E.A.; Demissie, E.A.; Mitku, A.B.; et al. Assessment of Agricultural Land Suitability for Surface Irrigation Using Geospatial Techniques in the Lower Omo Gibe Basin, Ethiopia. Water 2022, 14, 3887. [Google Scholar] [CrossRef]
- Song, G.; Zhang, H. Cultivated Land Use Layout Adjustment Based on Crop Planting Suitability: A Case Study of Typical Counties in Northeast China. Land 2021, 10, 107. [Google Scholar] [CrossRef]
- Vasu, D.; Srivastava, R.; Patil, N.; Tiwary, P.; Chandran, P.; Singh, S. A Comparative Assessment of Land Suitability Evaluation Methods for Agricultural Land Use Planning at Village Level. Land Use Policy 2018, 79, 146–163. [Google Scholar] [CrossRef]
- Yousif, I.A.H. Land Capability and Suitability Mapping in Some Areas of North-Western Coast. Egypt. J. Soil Sci. Agric. Eng. 2018, 9, 111–118. [Google Scholar] [CrossRef]
- Yousif, I.A.H. Soil Suitability Assessment Using MicroLEIS Model: A Case Study in Wadi El Heriga, North Western Coast Zone, Egypt. Egypt. J. Soil Sci. 2019, 59, 209–221. [Google Scholar] [CrossRef]
- O’Geen, A.T. A Revised Storie Index for Use with Digital Soils Information; University of California Division of Agriculture and Natural Resources (UCANR) Publications: Oakland, CA, USA, 2008. [Google Scholar]
- Kumar, A.; Pramanik, M.; Chaudhary, S.; Negi, M.S. Land evaluation for sustainable development of Himalayan agriculture using RS-GIS in conjunction with analytic hierarchy process and frequency ratio. J. Saudi Soc. Agric. Sci. 2021, 20, 1–17. [Google Scholar] [CrossRef]
- Girmay, G.; Sebnie, W.; Reda, Y. Land Capability Classification and Suitability Assessment for Selected Crops in Gateno Watershed, Ethiopia. Cogent Food Agric. 2018, 4, 1532863. [Google Scholar] [CrossRef]
- Yalew, S.G.; Van Griensven, A.; Mul, M.L.; van der Zaag, P. Land suitability analysis for agriculture in the Abbay basin using remote sensing, GIS and AHP techniques. Model. Earth Syst. Environ. 2016, 2, 101. [Google Scholar] [CrossRef]
- Yen, B.; Pheng, K.; Hoanh, C. LUSET (Land Use Suitability Evaluation Tool): User’s Guide; International Rice Research Institute: Laguna, Philippines, 2006. [Google Scholar]
- Bilas, G.; Karapetsas, N.; Gobin, A.; Mesdanitis, K.; Toth, G.; Hermann, T.; Wang, Y.; Luo, L.; Koutsos, T.M.; Moshou, D.; et al. Land Suitability Analysis as a Tool for Evaluating Soil-Improving Cropping Systems. Land 2022, 11, 2200. [Google Scholar] [CrossRef]
- Salvacion, A.R.; Martin, A.A. Climate change impact on corn suitability in Isabela province, Philippines. J. Crop Sci. Biotechnol. 2016, 19, 223–229. [Google Scholar] [CrossRef]
- Singha, C.; Swain, K.C. Land suitability evaluation criteria for agricultural crop selection: A review. Agric. Rev. 2016, 37, 125–132. [Google Scholar] [CrossRef]
- Yousif, I.A.H.; Ahmed, A.S. Land Evaluation and Assessment of Land Cover Change Using Geospatial Techniques: A Case Study in West Samlout Area, Egypt. Egypt. J. Soil Sci. 2024, 19, 223–229. [Google Scholar] [CrossRef]
- An, S.K.; Lee, H.B.; Kim, J.; Kim, K.S. Soil Moisture Sensor-Based Automated Irrigation of Cymbidium under Various Substrate Conditions. Sci. Hortic. 2021, 286, 110133. [Google Scholar] [CrossRef]
- Soulis, K.X.; Elmaloglou, S.; Dercas, N. Investigating the Effects of Soil Moisture Sensors Positioning and Accuracy on Soil Moisture Based Drip Irrigation Scheduling Systems. Agric. Water Manag. 2015, 148, 258–268. [Google Scholar] [CrossRef]
- Gabr, M.E.-S. Management of irrigation requirements using FAO-CROPWAT 8.0 model: A case study of Egypt. Model. Earth Syst. Environ. 2022, 8, 3127–3142. [Google Scholar] [CrossRef]
- Makar, R.S.; Shahin, S.A.; El-Nazer, M.; Wheida, A.; Abd El-Hady, M. Evaluating the Impacts of Climate Change on Irrigation Water Requirements. Sustainability 2022, 14, 14833. [Google Scholar] [CrossRef]
- Smith, M.; Allen, R.; Pereira, L. Revised FAO Methodology for Crop Water requirements. In Land and Water Development Division; FAO: Rome, Italy, 1998. [Google Scholar]
- Yang, Y.; Cui, Y.; Bai, K.; Luo, T.; Dai, J.; Wang, W.; Luo, Y. Short-term forecasting of daily reference evapotranspiration using the reduced-set PenmanMonteith model and public weather forecasts. Agric. Water Manag. 2019, 211, 70–80. [Google Scholar] [CrossRef]
- Zhong, S.Q.; Zhang, W.H.; Lv, J.K.; Wei, C.F. Temporal variation of soil water and its influencing factors in hilly area of Chongqing, China. Int. J. Agric. Biol. Eng. 2014, 7, 47–59. [Google Scholar]
- Gabr, M.E. Modelling net irrigation water requirements using FAO-CROPWAT 8.0 and CLIMWAT 2.0: A case study of Tina Plain and East South El Kantara regions, North Sinai, Egypt. Arch. Agron. Soil Sci. 2021, 68, 1322–1337. [Google Scholar] [CrossRef]
- Mashabatu, M.; Motsei, N.; Jovanović, N.; Dube, T.; Mathews, U.; Nqumkana, Y. Assessing the Seasonal Water Requirement of Fully Mature Japanese Plum Orchards: A Systematic Review. Appl. Sci. 2024, 14, 4097. [Google Scholar] [CrossRef]
- Delgado-Ramírez, G.; Bolaños-González, M.A.; Quevedo-Nolasco, A.; López-Pérez, A.; Estrada-Ávalos, J. Estimation of Reference Evapotranspiration in a Semi-Arid Region of Mexico. Sensors 2023, 23, 7007. [Google Scholar] [CrossRef]
- Şen, B. Determining the Changing Irrigation Demands of Maize Production in the Cukurova Plain under Climate Change Scenarios with the CROPWAT Model. Water 2023, 15, 4215. [Google Scholar] [CrossRef]
- Wang, J.; Raza, A.; Hu, Y.; Buttar, N.A.; Shoaib, M.; Saber, K.; Li, P.; Elbeltagi, A.; Ray, R.L. Development of Monthly Reference Evapotranspiration Machine Learning Models and Mapping of Pakistan—A Comparative Study. Water 2022, 14, 1666. [Google Scholar] [CrossRef]
- Derardja, B.; Khadra, R.; Abdelmoneim, A.A.A.; El-Shirbeny, M.A.; Valsamidis, T.; De Pasquale, V.; Deflorio, A.M.; Volden, E. Advancements in Remote Sensing for Evapotranspiration Estimation: A Comprehensive Review of Temperature-Based Models. Remote Sens. 2024, 16, 1927. [Google Scholar] [CrossRef]
- Diamantopoulou, M.J.; Papamichail, D.M. Performance Evaluation of Regression-Based Machine Learning Models for Modeling Reference Evapotranspiration with Temperature Data. Hydrology 2024, 11, 89. [Google Scholar] [CrossRef]
- Zotarelli, L.; Dukes, M.D.; Romero, C.C.; Migliaccio, K.W.; Morgan, K.T. Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method); Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 2010; Volume AE459, pp. 1–10. [Google Scholar]
- Tian, F.; Yang, P.; Hu, H.; Dai, C. Partitioning of Cotton Field Evapotranspiration under Mulched Drip Irrigation Based on a Dual Crop Coefficient Model. Water 2016, 8, 72. [Google Scholar] [CrossRef]
- Wang, F.; Chen, Y.; Li, Z.; Fang, G.; Li, Y.; Xia, Z. Assessment of the Irrigation Water Requirement and Water Supply Risk in the Tarim River Basin, Northwest China. Sustainability 2019, 11, 4941. [Google Scholar] [CrossRef]
- Thevs, N.; Peng, H.; Rozi, A.; Zerbe, S.; Abdusalih, N. Water allocation and water consumption of irrigated agriculture and natural vegetation in the Aksu-Tarim river basin, Xinjiang, China. J. Arid Environ. 2015, 112, 87–97. [Google Scholar] [CrossRef]
- Uniyal, B.; Dietrich, J.; Vu, N.Q.; Jha, M.K.; Arumi, J.L. Simulation of regional irrigation requirement with SWAT in different agro-climatic zones driven by observed climate and two reanalysis datasets. Sci. Total Environ. 2019, 649, 846–865. [Google Scholar] [CrossRef]
- Piticar, A.; Mihaila, D.; Lazurca, L.G.; Bistricean, P.I.; Putuntica, A.; Briciu, A.E. Spatiotemporal distribution of reference evapotranspiration in the Republic of Moldova. Theor. Appl. Climatol. 2016, 124, 1133–1144. [Google Scholar] [CrossRef]
- Ruan, H.; Yu, J.; Wang, P.; Wang, T. Increased crop water requirements have exacerbated water stress in the arid transboundary rivers of Central Asia. Sci. Total Environ. 2020, 713, 136585. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Pereira, L.S.; Simth, M.; Raes, D.; Wright, J.L. FAO-56 Dual Crop Coefficient Method for Estimating Evaporation from Soil and Application Extensions. J. Irrig. Drain. Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2022; p. 410.
- FAO. Guidelines for Soil Description, 4th ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; ISBN 978-92-5-105521-2. [Google Scholar]
- Mahmoud, M.S.; Khalaf, M.M. Paleoenvironmental contribution and visual kerogen assessment of some Upper Cretaceous sediments from southern Egypt. Arab. J. Geosci. 2023, 16, 375. [Google Scholar] [CrossRef]
- CONOCO. Geologic Map of Egypt (Scale 1:500,000); Egyptian General Authority for Petroleum (UNESCO Joint Map Project); CONOCO: Cairo, Egypt, 1987. [Google Scholar]
- Ouda, K.A.-K. The Nubia Sandstone (Nubia Group), Western Desert, Egypt: An Overview. Int. J.Trend Sci. Res. Dev. 2021, 5, 2456–6470. [Google Scholar]
- Soil Survey Staff. Kellogg Soil Survey Laboratory Methods Manual; Burt, R., Soil Survey Staff, Eds.; Soil Survey Investigations Report No. 42, Version 6.0; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Wilding, L.P. Spatial Variability: Its Documentation, Accommodation and Implication to Soil Surveys. In Soil Spatial Variability; Nielsen, D.R., Bouma, J., Eds.; Pudoc: Wageningen, Netherlands, 1985; pp. 166–194. [Google Scholar]
- Storie, R.E. The Storie Index Soil Rating Revised; Special Publication Division of Agricultural Science, University of California: Berkeley, CA, USA, 1978. [Google Scholar]
- Soil Science Division Staff. Soil Survey Manual; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; Government Printing Office: Washington, DC, USA, 2017; p. 587.
- Jantaravikorn, Y.; Ongsomwang, S. Soil Salinity Prediction and Its Severity Mapping Using a Suitable Interpolation Method on Data Collected by Electromagnetic Induction Method. Appl. Sci. 2022, 12, 10550. [Google Scholar] [CrossRef]
- Mallah, S.; Delsouz Khaki, B.; Davatgar, N.; Poppiel, R.R.; Demattê, J.A.M. Digital Mapping of Topsoil Texture Classes Using a Hybridized Classical Statistics–Artificial Neural Networks Approach and Relief Data. AgriEngineering 2023, 5, 40–64. [Google Scholar] [CrossRef]
- Saraswat, A.; Ram, S.; AbdelRahman, M.A.E.; Raza, M.B.; Golui, D.; HC, H.; Lawate, P.; Sharma, S.; Dash, A.K.; Scopa, A.; et al. Combining Fuzzy, Multicriteria and Mapping Techniques to Assess Soil Fertility for Agricultural Development: A Case Study of Firozabad District, Uttar Pradesh, India. Land 2023, 12, 860. [Google Scholar] [CrossRef]
- Shokr, M.S.; Abdellatif, M.A.; El Behairy, R.A.; Abdelhameed, H.H.; El Baroudy, A.A.; Mohamed, E.S.; Rebouh, N.Y.; Ding, Z.; Abuzaid, A.S. Assessment of Potential Heavy Metal Contamination Hazards Based on GIS and Multivariate Analysis in Some Mediterranean Zones. Agronomy 2022, 12, 3220. [Google Scholar] [CrossRef]
- Xu, T.; Merwade, V.; Wang, Z. Interpolating Hydrologic Data Using Laplace Formulation. Remote Sens. 2023, 15, 3844. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, L.; Xu, R.; He, X.; Mo, W.; Xu, J. Assessing Spatial Variation and Driving Factors of Available Phosphorus in a Hilly Area (Gaozhou, South China) Using Modeling Approaches and Digital Soil Mapping. Agriculture 2023, 13, 1541. [Google Scholar] [CrossRef]
- Yousif, M.; Hussien, H.M.; Abotalib, A.Z. The respective roles of modern and paleo recharge to alluvium aquifers in continental rift basins: A case study from El Qaa plain, Sinai, Egypt. Sci. Total Env. 2020, 739, 139927. [Google Scholar] [CrossRef]
- Abu Salem, H.S.; Gemail, K.S.; Junakova, N.; Ibrahim, A.; Nosair, A.M. An Integrated Approach for Deciphering Hydrogeochemical Processes during Seawater Intrusion in Coastal Aquifers. Water 2022, 14, 1165. [Google Scholar] [CrossRef]
- Qin, C.; An, Y.; Liang, P.; Zhu, A.; Yang, L. Soil property mapping by combining spatial distance information into the Soil Land Inference Model (SoLIM). Pedosphere 2021, 31, 638–644. [Google Scholar] [CrossRef]
- Ma, Y.; Minasny, B.; McBratney, A. Identifying soil provenance based on portable X-ray fluorescence measurements using similarity and inverse-mapping approaches—A case in the Lower Hunter Valley, Australia. Geoderma Reg. 2021, 25, e00368. [Google Scholar] [CrossRef]
- Smith, M. CROPWAT: A Computer Program for Irrigation Planning and Management; Food and Agriculture Organization of the United Nations: Rome, Italy, 1992. [Google Scholar]
- Martin, S. CROPWAT, 8.0; FAO Land and Water Development Division: Rome, Italy, 2009. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; 300p. [Google Scholar]
- Halimi, A.H.; Tefera, A.H. Application of cropwat model for estimation of irrigation scheduling of tomato in changing climate of eastern Europe: The case study of Godollo, Hungary. SSRG Int. J. Agric. Environ. Sci. 2019, 6, 1–11. [Google Scholar] [CrossRef]
- Pal, S.C.; Chakrabortty, R.; Roy, P.; Chowdhuri, I.; Das, B.; Saha, A.; Shit, M. Changing climate and land use of 21st century influences soil erosion in India. Gondwana Res. 2021, 94, 164–185. [Google Scholar] [CrossRef]
- Bubenzer, O.; Embabi, N.S.; Ashour, M.M. Sand Seas and Dune Fields of Egypt. Geosciences 2020, 10, 101. [Google Scholar] [CrossRef]
- El Gammal, E.-S.A.; El Gammal, A.E.-D.A. Hazard impact and genetic development of sand dunes west of Samalut, Egypt. Egypt. J. Remote Sens. Sp. Sci. 2010, 13, 137–151. [Google Scholar] [CrossRef]
- Carvalho, J.I.; Carayugan, M.B.; Tran, L.T.N.; Hernandez, J.O.; Youn, W.B.; An, J.Y.; Park, B.B. Variation in Root Biomass and Distribution Based on the Topography, Soil Properties, and Tree Influence Index: The Case of Mt. Duryun in Republic of Korea. Plants 2024, 13, 1340. [Google Scholar] [CrossRef]
- Kanianska, R.; Kizeková, M.; Jančová, Ľ.; Čunderlík, J.; Dugátová, Z. Effect of Soil Erosion on Soil and Plant Properties with a Consequence on Related Ecosystem Services. Sustainability 2024, 16, 7037. [Google Scholar] [CrossRef]
- Schreiner-McGraw, A.P.; Baffaut, C. Quantifying links between topsoil depth, plant water use, and yield in a rainfed maize field in the US Midwest. Agric. Water Manag. 2023, 290, 108569. [Google Scholar] [CrossRef]
- Siatwiinda, S.M.; Ros, G.H.; Yerokun, O.A.; de Vries, W. Options to reduce ranges in critical soil nutrient levels used in fertilizer recommendations by accounting for site conditions and methodology: A review. Agron. Sustain. Dev. 2024, 44, 9. [Google Scholar] [CrossRef]
- Selmy, S.A.H. Studies on Some Shale-Derived Soils in the New Valley, Egypt. Master’s Thesis, Assiut University, Assiut, Egypt, 2005. [Google Scholar]
- Selmy, S.; Abd El-Aziz, S.; Gameh, M.; Abdelsalam, A. Characterization and mapping spatial variability of Entisols derived from shale in Dakhla Oasis, Egypt. Arab. J. Geosci. 2020, 13, 592. [Google Scholar] [CrossRef]
- Selmy, S.A.H.; Abd Al-Aziz, S.H.; Jiménez-Ballesta, R.; Jesús García-Navarro, F.; Fadl, M.E. Soil Quality Assessment Using Multivariate Approaches: A Case Study of the Dakhla Oasis Arid Lands. Land 2021, 10, 1074. [Google Scholar] [CrossRef]
- FAO. Salt-Affected Soils and Their Management. In Soils Bulletin 39; Food and Agriculture Organization of the United Nation: Rome, Italy, 1988. [Google Scholar]
- Hazelton, P.; Murphy, B. Interpreting Soil Test Results: What Do All the Numbers Mean? 3rd ed.; Hazelton, P., Murphy, B., Eds.; CSIRO Publishing: Victoria, Australia, 2017; p. 200. [Google Scholar]
- Azab, Y.F.A.; Abbas, H.H.; Jalhoum, M.E.M.; Farid, I.M.; Abdelhameed, A.H.; Mohamed, E.S. Soil erosion assessment in arid region: A case study in Wadi Naghamish, Northwest Coast, Egypt. Eqypt. J. Rem. Sens. Space Sci. 2021, 24, 1111–1118. [Google Scholar] [CrossRef]
- Eid, A.N.M.; Olatubara, C.O.; Ewemoje, T.A.; El-Hennawy, M.T.; Farouk, H. Spatial and seasonal assessment of physico-chemical characteristics of soil in Wadi El-Rayan lakes using GIS technique. SN Appl. Sci. 2021, 3, 146. [Google Scholar] [CrossRef]
- Gad, A.A. Land capability classification of some western desert Oases, Egypt, using remote sensing and GIS. Egypt. J. Remote Sens. Space Sci. 2015, 18, 9–18. [Google Scholar] [CrossRef]
- Li, H.; Bulcke, J.V.D.; Kibleur, P.; Mendoza, O.; De Neve, S.; Sleutel, S. Soil textural control on moisture distribution at the microscale and its effect on added particulate organic matter mineralization. Soil Biol. Biochem. 2022, 172, 108777. [Google Scholar] [CrossRef]
- Naorem, A.; Jayaraman, S.; Dang, Y.P.; Dalal, R.C.; Sinha, N.K.; Rao, C.S.; Patra, A.K. Soil Constraints in an Arid Environment—Challenges, Prospects, and Implications. Agronomy 2023, 13, 220. [Google Scholar] [CrossRef]
- Paradelo, R.; Navarro-Pedreño, J.; Glaser, B.; Grobelak, A.; Kowalska, A.; Singh, B.R. Potential and Constraints of Use of Organic Amendments from Agricultural Residues for Improvement of Soil Properties. Sustainability 2024, 16, 158. [Google Scholar] [CrossRef]
- Soil Survey Division Staff. Soil Survey Manual; Handbook No. 18; U.S. Department of Agriculture: Washington, DC, USA, 1993.
- Abd-Elmabod, S.K.; Bakr, N.; Muñoz-Rojas, M.; Pereira, P.; Zhang, Z.; Cerdà, A.; Jordán, A.; Mansour, H.; De la Rosa, D.; Jones, L. Assessment of Soil Suitability for Improvement of Soil Factors and Agricultural Management. Sustainability 2019, 11, 1588. [Google Scholar] [CrossRef]
- Karapetsas, N.; Gobin, A.; Bilas, G.; Koutsos, T.M.; Pavlidis, V.; Katragkou, E.; Alexandridis, T.K. Analysis of Land Suitability for Maize Production under Climate Change and Its Mitigation Potential through Crop Residue Management. Land 2024, 13, 63. [Google Scholar] [CrossRef]
- Liu, S.; Qin, T.; Dong, B.; Shi, X.; Lv, Z.; Zhang, G. The Influence of Climate, Soil Properties and Vegetation on Soil Nitrogen in Sloping Farmland. Sustainability 2021, 13, 1480. [Google Scholar] [CrossRef]
- Maghami, F.; Karimi, A.; Bagheri-Bodaghabadi, M.; Emami, H.; Duraisamy, V. Evaluation of soil quality and land suitability in different management systems. Arch. Agron. Soil Sci. 2024, 70, 1–19. [Google Scholar] [CrossRef]
- Selmy, S.A.H.; Abd Al-Aziz, S.H.; Ibrahim, A.G.; Jiménez-Ballesta, R. Impact of Short-Term Cultivation on Some Selected Properties of Sandy Soil in an Arid Environment. Soil Syst. 2022, 6, 82. [Google Scholar] [CrossRef]
- Negiş, H. Using Models and Artificial Neural Networks to Predict Soil Compaction Based on Textural Properties of Soils under Agriculture. Agriculture 2024, 14, 47. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, D.; Hang, H.; Chen, S.; Liu, H.; Su, J.; Lv, H.; Jia, H.; Zhao, G. Effects of Balancing Exchangeable Cations Ca, Mg, and K on the Growth of Tomato Seedlings (Solanum lycopersicum L.) Based on Increased Soil Cation Exchange Capacity. Agronomy 2024, 14, 629. [Google Scholar] [CrossRef]
- Doran, J.W.; Sarrantonio, M.; Liebig, M.A. Soil Health and Sustainability. Adv. Agron. 1996, 56, 1–54. [Google Scholar] [CrossRef]
- Lal, R.; Delgado, J.A.; Groffman, P.M.; Millar, N.; Dell, C.; Rotz, A. Management to mitigate and adapt to climate change. J. Soil Water Conserv. 2011, 66, 276–285. [Google Scholar] [CrossRef]
- Karami, A.; Homaee, M.; Afzalinia, S.; Ruhipour, H.; Basirat, S. Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agric. Ecosyst. Environ. 2012, 148, 22–28. [Google Scholar] [CrossRef]
- Li, X.-G.; Li, F.-M.; Zed, R.; Zhan, Z.-Y.; Bhupinderpal, S. Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland. Geoderma 2007, 139, 98–105. [Google Scholar] [CrossRef]
- Murphy, B.W. Impact of soil organic matter on soil properties—A review with emphasis on Australian soils. Soil Res. 2015, 53, 605–635. [Google Scholar] [CrossRef]
- Toohey, R.C.; Boll, J.; Brooks, E.S.; Jones, J.R. Effects of land use on soil properties and hydrological processes at the point, plot, and catchment scale in volcanic soils near Turrialba, Costa Rica. Geoderma 2018, 315, 138–148. [Google Scholar] [CrossRef]
- Darwish, K.M.; Abdel-Kawy, W.A. Land suitability decision support for assessing land use changes in areas west of Nile Delta, Egypt. Arab. J. Geosci. 2014, 7, 865–875. [Google Scholar] [CrossRef]
- Rashed, H.S.A. Classification and Mapping of Land Productivity, Capability and Suitability for Production Crops in West El-Minia Governorate, Egypt. J. Soil Sci. Agric. Eng. 2020, 11, 709–717. [Google Scholar] [CrossRef]
- Said, M.E.S.; Ali, A.M.; Borin, M.; Abd-Elmabod, S.K.; Aldosari, A.A.; Khalil, M.M.N.; Abdel-Fattah, M.K. On the Use of Multivariate Analysis and Land Evaluation for Potential Agricultural Development of the Northwestern Coast of Egypt. Agronomy 2020, 10, 1318. [Google Scholar] [CrossRef]
- Yousif, I.A.H. Optimizing Agricultural Land Evaluation of Some Areas in the New Delta Region, Al-Dabaa Corridor, Egypt. Egypt. J. Soil. Sci. 2024, 64, 193–206. [Google Scholar] [CrossRef]
- Zakarya, Y.M.; Metwaly, M.M.; AbdelRahman, M.A.E.; Metwalli, M.R.; Koubouris, G. Optimized Land Use through Integrated Land Suitability and GIS Approach in West El-Minia Governorate, Upper Egypt. Sustainability 2021, 13, 12236. [Google Scholar] [CrossRef]
- Kavvadias, V.; Papadopoulou, M.; Vavoulidou, E.; Theocharopoulos, S.; Repas, S.; Koubouris, G.; Psarras, G.; Kokkinos, G. Effect of addition of organic materials and irrigation practices on soil quality in olive groves. J. Water Clim. Chang. 2018, 9, 775–785. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Bullock, D.G. Correlation of Corn and Soybean Grain Yield with Topography and Soil Properties. Agron. J. 2000, 92, 75–83. [Google Scholar] [CrossRef]
- Alexakis, D.E.; Bathrellos, G.D.; Skilodimou, H.D.; Gamvroula, D.E. Land Suitability Mapping Using Geochemical and Spatial Analysis Methods. Appl. Sci. 2021, 11, 5404. [Google Scholar] [CrossRef]
- Lara-Estrada, L.D.; Rasche, L.; Schneider, U. Modeling land suitability for Coffea arabica L. in Central America. Environ. Model. Softw. 2017, 95, 96–209. [Google Scholar] [CrossRef]
- Liu, Y.-S.; Wang, J.-Y.; Guo, L.-Y. GIS-based assessment of land suitability for optimal allocation in the Qinling Mountains, China. Pedosphere 2006, 16, 579–586. [Google Scholar] [CrossRef]
- Safari, Y.; Esfandiarpour-Boroujeni, I.; Kamali, A.; Salehi, M.H.; Bagheri-Bodaghabadi, M. Qualitative land suitability evaluation for main irrigated crops in the shahrekord plain, Iran: A geostatistical approach compared with conventional method. Pedosphere 2013, 23, 767–778. [Google Scholar] [CrossRef]
- Gabr, M.E. Land reclamation projects in the Egyptian Western Desert: Management of 1.5 million acres of groundwater irrigation. Water Int. 2023, 48, 240–258. [Google Scholar] [CrossRef]
- Moghazy, N.H.; Kaluarachchi, J.J. Sustainable Agriculture Development in the Western Desert of Egypt: A Case Study on Crop Production, Profit, and Uncertainty in the Siwa Region. Sustainability 2020, 12, 6568. [Google Scholar] [CrossRef]
- El-Shirbeny, M.A.; Abdellatif, B. Reference evapotranspiration borders maps of Egypt based on kriging spatial statistics method. GEOMATE J. 2017, 13, 1–8. [Google Scholar] [CrossRef]
- Moghazy, N.H.; Kaluarachchi, J.J. Impact of Climate Change on Agricultural Development in a Closed Groundwater-Driven Basin: A Case Study of the Siwa Region, Western Desert of Egypt. Sustainability 2021, 13, 1578. [Google Scholar] [CrossRef]
- Mialyk, O.; Schyns, J.F.; Booij, M.J.; Su, H.; Hogeboom, R.J.; Berger, M. Water footprints and crop water use of 175 individual crops for 1990–2019 simulated with a global crop model. Sci. Data 2024, 11, 206. [Google Scholar] [CrossRef]
- Lalic, B.; Francia, M.; Jacimovic, G. Assessment of climate change impact on crop water requirements in Serbia in 2030 using CROPWAT model. In Proceedings of the International Scientific Conference on Environmental Changes and Adaptation Strategies, Skalica, Slovakia, 9–11 September 2013. [Google Scholar]
- Elnashar, A.; Abbas, M.; Sobhy, H.; Shahba, M. Crop Water Requirements and Suitability Assessment in Arid Environments: A New Approach. Agronomy 2021, 11, 260. [Google Scholar] [CrossRef]
- Mostafa, S.M.; Wahed, O.; El-Nashar, W.Y.; El-Marsafawy, S.M.; Zeleňáková, M.; Abd-Elhamid, H.F. Potential Climate Change Impacts on Water Resources in Egypt. Water 2021, 13, 1715. [Google Scholar] [CrossRef]
- de Azevedo, P.V.; de Souza, C.B.; da Silva, B.B.; da Silva, V.P.R. Water requirements of pineapple crop grown in a tropical environment, Brazil. Agric. Water Manag. 2007, 88, 201–208. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2020. In Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020; Available online: https://openknowledge.fao.org/handle/20.500.14283/cb1447en (accessed on 18 October 2022).
- Al-Said, F.A.; Ashfaq, M.; Al-Barhi, M.; Hanjra, M.A.; Khan, I.A. Water Productivity of Vegetables under Modern Irrigation Methods in Oman. Irrig. Drain. 2012, 61, 477–489. [Google Scholar] [CrossRef]
- Tsakmakis, I.; Kokkos, N.; Pisinaras, V.; Papaevangelou, V.; Hatzigiannakis, E.; Arampatzis, G.; Gikas, G.; Linker, R.; Zoras, S.; Evagelopoulos, V.; et al. Operational precise irrigation for cotton cultivation through the coupling of meteorological and crop growth models. Water Resour. Manag. 2017, 31, 563–580. [Google Scholar] [CrossRef]
- Carr, M.K.V. The water relations and irrigation requirements of olive (Olea europaea L.): A review. Exp. Agric. 2013, 49, 597–639. [Google Scholar] [CrossRef]
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max. Temp. (°C) | 18 | 20 | 22 | 26 | 29 | 32 | 32 | 34 | 31 | 30 | 26 | 22 |
Min. Temp. (°C) | 7 | 9 | 10 | 12 | 17 | 20 | 22 | 23 | 22 | 18 | 14 | 10 |
Mean Temp. (°C) | 13 | 14 | 16 | 19 | 23 | 26 | 27 | 28 | 27 | 24 | 20 | 16 |
Precipitation (mm) | 20 | 12 | 14 | 2 | 0 | 0 | 0 | 0 | 0 | 6 | 16 | 28 |
Evapot. (mm day−1) | 11 | 14 | 18 | 22 | 25 | 26 | 26 | 25 | 22 | 17 | 13 | 11 |
Wind Speed (m s−1) | 4.1 | 2.7 | 4.1 | 3.4 | 3.6 | 3.2 | 3.1 | 2.8 | 3.3 | 3.2 | 2.2 | 2.3 |
Solar R. (watts/m2) | 144 | 177 | 226 | 272 | 297 | 316 | 317 | 301 | 261 | 211 | 162 | 130 |
Relative H. (%) | 65 | 59 | 53 | 43 | 40 | 41 | 45 | 48 | 53 | 58 | 61 | 65 |
Sunshine (h/month) | 192 | 218 | 248 | 273 | 316 | 354 | 363 | 344 | 297 | 282 | 225 | 195 |
Capability Grade | Capability Category | Productivity Rating (%) | Description |
---|---|---|---|
Grade 1 | Excellent | 80–100 | Soils with few or no limitations |
Grade 2 | Good | 60–79 | Soils with limitations that reduce the choice of crops or require simple soil conservation practices |
Grade 3 | Fair | 40–59 | Soils with severe limitations that reduce the choice of crops and/or require special conservation practices |
Grade 4 | Poor | 20–39 | Soils with very severe limitations that restrict the choice of crops and/or require very careful management |
Grade 5 | Non-agricultural | <20 | Soils with very severe limitations that restrict their use in agriculture |
Suitability Class Symbol | Suitability Score | Suitability Class |
---|---|---|
S1 | 85–100 | Highly suitable |
S2 | 60–85 | Moderately suitable |
S3 | 40–60 | Marginally suitable |
N | 0–40 | Not Suitable |
Soil Property | Min. | Max. | Mean | Std. D. | C.V. (%) | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
Soil depth (cm) | 50 | 150 | 138 | 19.56 | 14.18 | −1.63 | 2.91 |
ECe (dSm−1) | 0.1 | 22.0 | 1.4 | 2.86 | 208.34 | 6.19 | 40.59 |
Slope (%) | 0.00 | 29.16 | 5.93 | 4.13 | 69.55 | 2.40 | 9.77 |
CaCO3 (mgkg−1) | 0.00 | 9.60 | 2.27 | 2.18 | 96.16 | 1.22 | 1.15 |
ESP (%) | 3.8 | 16.0 | 8.0 | 2.33 | 29.05 | 0.91 | 1.43 |
SAR | 7.1 | 17.3 | 7.7 | 1.33 | 17.21 | 6.19 | 40.59 |
CEC (cmol(+)kg−1) | 5.0 | 15.0 | 6.20 | 3.07 | 49.59 | 2.40 | 4.17 |
pH | 6.50 | 8.83 | 7.66 | 0.68 | 8.84 | 0.11 | −1.25 |
Sand (%) | 57.5 | 96.8 | 80.46 | 10.60 | 13.18 | −0.57 | −0.73 |
Silt (%) | 0.1 | 19.8 | 8.29 | 5.30 | 63.95 | 0.57 | −0.73 |
Clay (%) | 3.1 | 22.7 | 11.25 | 5.30 | 47.10 | 0.56 | −0.73 |
Capability Grade | Area | |
---|---|---|
Hectares | % | |
Grade 3 | 30,599.41 | 87.3 |
Grade 4 | 2275.49 | 6.5 |
Grade 5 | 254.91 | 0.7 |
Sand dunes | 1918.05 | 5.5 |
Total | 35,047.86 | 100 |
Crop | Land Suitability Category | |||
---|---|---|---|---|
S2 | S3 | |||
Hectares | % | Hectares | % | |
Alfalfa | 20,068.74 | 57.3 | 13,061.06 | 37.2 |
Barley | 31,056.38 | 88.6 | 2073.43 | 5.9 |
Wheat | 30,920.03 | 88.2 | 2209.78 | 6.3 |
Sorghum | 30,954.55 | 88.3 | 2175.26 | 6.2 |
Millet | 27,141.35 | 77.4 | 5988.46 | 17.1 |
Crop | Land Suitability Category | |||||
---|---|---|---|---|---|---|
S2 | S3 | N | ||||
Hectares | % | Hectares | % | Hectares | % | |
Mangos | 3272.42 | 9.3 | 21,055.89 | 60.1 | 8801.502 | 25.1 |
Peaches | 2950.27 | 8.4 | 25,281.14 | 72.1 | 4898.40 | 14.0 |
Pears | 2463.46 | 7.0 | 21,941.98 | 62.6 | 8724.36 | 24.9 |
Citrus | 4703.67 | 13.4 | 27,647.58 | 78.9 | 778.55 | 2.2 |
Olives | 5750.31 | 16.4 | 23,294.53 | 66.5 | 4084.97 | 11.6 |
Crop | Land Suitability Category | |||||
---|---|---|---|---|---|---|
S2 | S3 | N | ||||
Hectares | % | Hectares | % | Hectares | % | |
Maize | 9119.34 | 26.0 | 22,552.67 | 64.4 | 1457.80 | 4.1 |
Safflowers | 29,131.24 | 83.1 | 3998.57 | 11.4 | -- | -- |
Sunflowers | 29,976.49 | 85.5 | 3153.32 | 9.0 | -- | -- |
Soybeans | 3305.93 | 9.4 | 29,823.88 | 85.1 | -- | -- |
Groundnuts | 7215.79 | 20.6 | 23,037.50 | 65.7 | 2876.52 | 8.2 |
Crop | Land Suitability Category | |||
---|---|---|---|---|
S2 | S3 | |||
Hectares | % | Hectares | % | |
Potatoes | 27,285.98 | 77.8 | 5843.82 | 16.7 |
Onions | 26,822.21 | 76.5 | 6307.60 | 18.0 |
Peas | 3214.78 | 9.2 | 29,915.03 | 85.3 |
Green Peppers | 5264.11 | 15.0 | 27,865.7 | 79.5 |
Tomatoes | 16,789.62 | 47.9 | 16,340.19 | 46.6 |
Month | ETo mm/day | Olives | Citrus | Pears | Mangos | Peaches | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
KC | ETc | KC | ETc | KC | ETc | KC | ETc | KC | ETc | ||
mm/month | mm/month | mm/month | mm/month | mm/month | |||||||
Jan | 2.6 | 0.4 | 32.2 | 0.8 | 64.5 | 0.7 | 56.4 | 0.8 | 64.5 | 0.7 | 56.4 |
Feb | 3.2 | 0.5 | 44.8 | 0.8 | 71.7 | 0.8 | 71.7 | 0.8 | 71.7 | 0.8 | 71.7 |
Mar | 3.7 | 0.7 | 80.3 | 0.7 | 80.3 | 0.9 | 103.2 | 0.8 | 91.8 | 0.9 | 103.2 |
Apr | 4.6 | 0.7 | 96.6 | 0.7 | 96.6 | 1 | 138.0 | 0.8 | 110.4 | 1 | 138.0 |
May | 5.2 | 0.7 | 112.8 | 0.7 | 112.8 | 1.1 | 177.3 | 0.8 | 129.0 | 1.1 | 177.3 |
Jun | 5.8 | 0.7 | 121.8 | 0.7 | 121.8 | 1.2 | 208.8 | 0.8 | 139.2 | 1.2 | 208.8 |
Jul | 5.9 | 0.7 | 128.0 | 0.7 | 128.0 | 1.2 | 219.5 | 0.8 | 146.3 | 1.2 | 219.5 |
Aug | 5.8 | 0.6 | 107.9 | 0.7 | 125.9 | 1.2 | 215.8 | 0.8 | 143.8 | 1.2 | 215.8 |
Sep | 5.3 | 0.6 | 95.4 | 0.7 | 111.3 | 1.1 | 174.9 | 0.8 | 127.2 | 1.1 | 174.9 |
Oct | 4.3 | 0.6 | 80.0 | 0.7 | 93.3 | 0.9 | 120.0 | 0.8 | 106.6 | 0.9 | 120.0 |
Nov | 3.4 | 0.5 | 51.0 | 0.7 | 71.4 | 0.9 | 91.8 | 0.8 | 81.6 | 0.9 | 91.8 |
Dec | 2.8 | 0.5 | 43.4 | 0.7 | 64.5 | 0.8 | 69.4 | 0.8 | 69.4 | 0.8 | 69.4 |
Total ETc (mm season−1) | 994.2 | 1138.4 | 1646.8 | 1281.5 | 1646.8 | ||||||
Month | ETo mm/day | Potatoes | Peas | Tomatoes | Onions | Peppers | |||||
KC | ETc | KC | ETc | KC | ETc | KC | ETc | KC | ETc | ||
mm/month | mm/month | mm/month | mm/month | mm/month | |||||||
Jan | 2.6 | 0.25 | 20.2 | 0.95 | 76.6 | ||||||
Feb | 3.2 | 0.8 | 71.7 | ||||||||
Mar | 3.7 | ||||||||||
Apr | 4.6 | ||||||||||
May | 5.2 | 0.4 | 64.5 | 0.35 | 56.4 | ||||||
Jun | 5.8 | 0.55 | 95.7 | 0.5 | 87.0 | ||||||
Jul | 5.9 | 1.05 | 192.1 | 1 | 182.9 | ||||||
Aug | 5.8 | 0.15 | 27.0 | 1.15 | 206.8 | 1.1 | 197.8 | ||||
Sep | 5.3 | 0.5 | 79.5 | 0.85 | 135.2 | 0.8 | 127.2 | ||||
Oct | 4.3 | 0.6 | 80.0 | 0.15 | 20.0 | 0.5 | 66.7 | ||||
Nov | 3.4 | 1.1 | 112.2 | 0.6 | 61.2 | 0.62 | 63.2 | ||||
Dec | 2.8 | 0.6 | 52.1 | 0.95 | 82.5 | 0.95 | 82.5 | ||||
Total ETc (mm season−1) | 350.8 | 183.9 | 694.3 | 360.7 | 651.3 | ||||||
Month | ETo mm/day | Maize | Soybeans | Groundnuts | Sunflowers | Safflowers | |||||
KC | ETc | KC | ETc | KC | ETc | KC | ETc | KC | ETc | ||
mm/month | mm/month | mm/month | mm/month | mm/month | |||||||
Jan | 2.6 | ||||||||||
Feb | 3.2 | ||||||||||
Mar | 3.7 | 0.15 | 17.2 | ||||||||
Apr | 4.6 | 0.5 | 69.0 | 0.65 | 89.7 | ||||||
May | 5.2 | 0.3 | 48.4 | 0.86 | 138.6 | 1.1 | 177.3 | 0.35 | 56.4 | 0.2 | 32.2 |
Jun | 5.8 | 0.89 | 154.9 | 1 | 174.0 | 0.5 | 87.0 | 0.91 | 158.3 | 0.67 | 116.6 |
Jul | 5.9 | 1.1 | 201.2 | 1 | 182.9 | 1.1 | 201.2 | 1.15 | 210.3 | ||
Aug | 5.8 | 0.8 | 143.8 | 0.56 | 100.7 | 0.65 | 116.9 | 0.65 | 116.9 | ||
Sep | 5.3 | ||||||||||
Oct | 4.3 | ||||||||||
Nov | 3.4 | ||||||||||
Dec | 2.8 | ||||||||||
Total ETc (mm season−1) | 548.3 | 665.2 | 371.2 | 532.8 | 476.0 | ||||||
Month | ETo mm/day | Alfalfa | Barley | Wheat | Sorghum | Millet | |||||
KC | ETc | KC | ETc | KC | ETc | KC | ETc | KC | ETc | ||
mm/month | mm/month | mm/month | mm/month | mm/month | |||||||
Jan | 2.6 | 0.95 | 76.6 | 0.73 | 58.8 | 0.9 | 72.5 | ||||
Feb | 3.2 | 0.95 | 85.1 | 1.15 | 103.0 | 1.1 | 98.6 | ||||
Mar | 3.7 | 0.95 | 109.0 | 1.15 | 131.9 | 1.1 | 126.2 | ||||
Apr | 4.6 | 0.95 | 131.1 | 0.7 | 96.6 | ||||||
May | 5.2 | 0.95 | 153.1 | 0.55 | 88.7 | 0.25 | 40.3 | ||||
Jun | 5.8 | 0.95 | 165.3 | 0.83 | 144.4 | 0.67 | 116.6 | ||||
Jul | 5.9 | 0.95 | 173.8 | 1.1 | 201.2 | 1.1 | 201.2 | ||||
Aug | 5.8 | 0.95 | 170.8 | 0.7 | 125.9 | 0.7 | 125.9 | ||||
Sep | 5.3 | 0.95 | 151.1 | ||||||||
Oct | 4.3 | 0.95 | 126.6 | ||||||||
Nov | 3.4 | 0.95 | 96.9 | 0.3 | 30.6 | 0.5 | 51.0 | ||||
Dec | 2.8 | 0.95 | 82.5 | 0.73 | 63.4 | 0.6 | 52.1 | ||||
Total ETc (mm season−1) | 1521.9 | 387.7 | 497.0 | 560.2 | 484.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selmy, S.A.H.; Jimenez-Ballesta, R.; Kucher, D.E.; Sayed, A.S.A.; García-Navarro, F.J.; Yang, Y.; Yousif, I.A.H. Land Suitability Assessment and Crop Water Requirements for Twenty Selected Crops in an Arid Land Environment. Agronomy 2024, 14, 2601. https://doi.org/10.3390/agronomy14112601
Selmy SAH, Jimenez-Ballesta R, Kucher DE, Sayed ASA, García-Navarro FJ, Yang Y, Yousif IAH. Land Suitability Assessment and Crop Water Requirements for Twenty Selected Crops in an Arid Land Environment. Agronomy. 2024; 14(11):2601. https://doi.org/10.3390/agronomy14112601
Chicago/Turabian StyleSelmy, Salman A. H., Raimundo Jimenez-Ballesta, Dmitry E. Kucher, Ahmed S. A. Sayed, Francisco J. García-Navarro, Yujian Yang, and Ibraheem A. H. Yousif. 2024. "Land Suitability Assessment and Crop Water Requirements for Twenty Selected Crops in an Arid Land Environment" Agronomy 14, no. 11: 2601. https://doi.org/10.3390/agronomy14112601
APA StyleSelmy, S. A. H., Jimenez-Ballesta, R., Kucher, D. E., Sayed, A. S. A., García-Navarro, F. J., Yang, Y., & Yousif, I. A. H. (2024). Land Suitability Assessment and Crop Water Requirements for Twenty Selected Crops in an Arid Land Environment. Agronomy, 14(11), 2601. https://doi.org/10.3390/agronomy14112601