Estimation of Reference Evapotranspiration in a Semi-Arid Region of Mexico
<p>Location of the automated weather station (AWS).</p> "> Figure 2
<p>Altitude map of Module XII.</p> "> Figure 3
<p>Reference evapotranspiration estimated with the FA0-56 Penman–Monteith method using AWS meteorological data (blue points) and rainfall recorded in the study period (red bars).</p> "> Figure 4
<p>Bias between observed (AWS) and reference (NP) data for the meteorological. (<b>a</b>) Bias in AWS and NP Data Tmax. (<b>b</b>) Bias in AWS and NP Data Tmin. (<b>c</b>) Bias in AWS and NP Data RH. (<b>d</b>) Bias in AWS and NP Data SR. (<b>e</b>) Bias in AWS and NP Data WS.</p> "> Figure 5
<p>Different ways to estimate ET<sub>0</sub> using empirical equations and the reference method (PM) during the study period. (<b>a</b>) Estimation Daily ET<sub>0</sub>. (<b>b</b>) Estimation 5-Day Mean ET<sub>0</sub>. (<b>c</b>) Estimation 5-Day Cumulative ET<sub>0</sub>.</p> "> Figure 6
<p>Dispersion plot of the calibrated HS method (HS<sub>_NP</sub>) relative to the FAO-56 Penman–Monteith (PM) reference method for the different ET<sub>0</sub> calculation periods: Daily (<b>a</b>), 5-Day Mean (<b>b</b>) 5-Day Cumulative (<b>c</b>).</p> "> Figure 7
<p>Linear relationship between ET<sub>0</sub> estimates with the HS equation using temperature data from the AWS and the NP platform for the different ET<sub>0</sub> calculation periods: Daily (<b>a</b>), 5-Day Mean (<b>b</b>) 5-Day Cumulative (<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. ET0 Estimation with Empirical Equations
2.2.1. FAO-56 Penman–Monteith Method (ET0-PM)
2.2.2. Hargreaves–Samani Method (ET0-HS)
2.2.3. Blaney–Criddle Method (ET0-BC)
2.3. Inferential Evaluation Parameters
3. Results and Discussion
3.1. Comparison of ET0 Estimated by Empirical Equations versus the Reference Method
3.2. Comparison of Estimated ET0 with Observed (AWS) versus Estimated (NP) Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Irmak, S. Evapotranspiration. In Encyclopedia of Ecology; Academic Press: Cambridge, MA, USA, 2008; pp. 1432–1438. [Google Scholar] [CrossRef]
- Stanhill, G. Evapotranspiration. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Singh, P.; Srivastava, P.K.; Mall, R.K. Estimation of potential evapotranspiration using INSAT-3D satellite data over an agriculture area. Agric. Water Manag. 2021, 2021, 143–155. [Google Scholar] [CrossRef]
- Melesse, A.M.; Weng, Q.; Thenkabail, P.S.; Senay, G.B. Remote Sensing Sensors and Applications in Environmental Resources Mapping and Modelling. Sensors 2007, 7, 3209–3241. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, S.K.; Srivastava, P.K. Future challenges in agricultural water management. Agric. Water Manag. 2021, 2021, 445–456. [Google Scholar] [CrossRef]
- Huntington, T.G. Climate Warming-Induced Intensification of the Hydrologic Cycle. Adv. Agron. 2010, 109, 1–53. [Google Scholar] [CrossRef]
- Wang, L.; Iddio, E.; Ewers, B. Introductory overview: Evapotranspiration (ET) models for controlled environment agriculture (CEA). Comput. Electron. Agric. 2021, 190, 106447. [Google Scholar] [CrossRef]
- Althoff, D.; Rodrigues, L.N. Improvement of reference crop evapotranspiration estimates using limited data for the Brazilian Cerrado. Sci. Agric. 2023, 80, 1–11. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements; Irrigation and Drainage paper No. 56; FAO: Rome, Italy, 1998; Available online: https://www.fao.org/3/x0490e/x0490e00.htm (accessed on 1 March 2022).
- Gong, L.; Xu, C.; Chen, D.; Halldin, S.; Chen, Y.D. Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. J. Hydrol. 2006, 329, 620–629. [Google Scholar] [CrossRef]
- Pereira, L.S.; Alves, I.; Paredes, P. Crop and landscape water requirements. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Peng, L.; Li, Y.; Feng, H. The best alternative for estimating reference crop evapotranspiration in different sub-regions of mainland China. Sci. Rep. 2017, 7, 5458. [Google Scholar] [CrossRef] [Green Version]
- Talebmorad, H.; Ahmadnejad, A.; Eslamian, S.; Askari, K.O.A.; Singh, V.P. Evaluation of uncertainty in evapotranspiration values by FAO56-Penman-Monteith and Hargreaves-Samani methods. Int. J. Hydrol. Sci. Technol. 2020, 10, 135–147. [Google Scholar] [CrossRef]
- Wen, C.; Shuanghe, S.H.; Chunfeng, D. Sensitivity of the Penman-Monteith Reference Evapotranspiration in Growing Season in the Northwest China. In Proceedings of the International Conference on Multimedia Technology, Ningbo, China, 29–31 October 2010. [Google Scholar] [CrossRef]
- Muhammad, M.K.I.; Shahid, S.; Ismail, T.; Harun, S.; Kisi, O.; Yaseen, Z.M. The development of evolutionary computing model for simulating reference evapotranspiration over Peninsular Malaysia. Theor. Appl. Clim. 2021, 144, 1419–1434. [Google Scholar] [CrossRef]
- Raziei, T.; Pereira, L.S. Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agric. Water Manag. 2013, 121, 1–18. [Google Scholar] [CrossRef]
- Gabr, M.E.-S. Management of irrigation requirements using FAO-CROPWAT 8.0 model: A case study of Egypt. Model. Earth Syst. Environ. 2022, 8, 3127–3142. [Google Scholar] [CrossRef]
- Surendran, U.; Sushanth, C.M.; Joseph, E.J.; Al-Ansari, N.; Yasseen, Z.M. FAO CROPWAT Model-Based Irrigation Requirements for Coconut to Improve Crop and Water Productivity in Kerala, India. Sustainability 2019, 11, 5132. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, R.S.; Chile, A.M. Métodos de cálculo para estimar la evapotranspiración de referencia para el Valle de Tumbaco. Siembra 2020, 7, 70–79. [Google Scholar] [CrossRef]
- Yamaç, S.S. Reference Evapotranspiration Estimation With kNN and ANN Models Using Different Climate Input Combinations in the Semi-arid Environment. J. Agric. Sci. Tarim Bilimleri Dergisi 2021, 27, 129–137. [Google Scholar] [CrossRef]
- Sahoo, B.; Walling, I.; Deka, B.C.; Bhatt, B.P. Standardization of Reference Evapotranspiration Models for a Subhumid Valley Rangeland in the Eastern Himalayas. J. Irrigat. Drain. Eng. 2012, 138, 880–895. [Google Scholar] [CrossRef]
- Srivastava, A.; Sahoo, B.; Raghuwanshi, N.S.; Singh, R. Evaluation of Variable-Infiltration Capacity Model and MODIS-Terra Satellite-Derived Grid-Scale Evapotranspiration Estimates in a River Basin with Tropical Monsoon-Type Climatology. J. Irrig. Drain. Eng. 2017, 143, 04017028. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Evapotranspiración del cultivo: Guías para la determinación de los requerimientos de agua de los cultivos. In FAO Riego y Drenaje Manual 56; FAO: Rome, Italy, 2006; Available online: https://www.fao.org/3/x0490s/x0490s00.htm (accessed on 15 May 2022).
- Gavilán, M.P.; Estévez, J.; Berengena, J. ETo estandarizada en el sur de España ¿Cuál debe ser la referencia? In Proceedings of the XXXIV Congreso Nacional de Riegos, Escuela Universitaria de Ingeniería Técnica Agrícola, Sevilla, Spain, 7–9 June 2016; Available online: https://idus.us.es/bitstream/handle/11441/41070/T-A-01.pdf?sequence=1&isAllowed=y (accessed on 23 July 2023).
- Borges, J.C.F.; Anjos, R.J.; Silva, T.J.A.; Lima, J.R.S.; Andrade, C.L.T. Métodos de estimativa da evapotranspiração de referência diária para a microrregião de Garanhuns, PE. Rev. Bras. Eng. Agrí Amb. 2012, 16, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Woldesenbet, T.A.; Elagib, N.A. Spatial-temporal evaluation of different reference evapotranspiration methods based on the climate forecast system reanalysis data. Hydrol. Process. 2021, 36, e14239. [Google Scholar] [CrossRef]
- Jiménez, J.S.I.; Ojeda, B.W.; Inzunza, I.M.A.; Marcial, P.M.D.J. Analysis of the NASA-POWER system for estimating reference evapotranspiration in the Comarca Lagunera, Mexico. Ing. Agrícola Biosist. 2021, 13, 201–226. [Google Scholar] [CrossRef]
- Luo, Y.; Chang, X.; Peng, S.; Khan, S.; Wang, W.; Zheng, Q.; Cai, X. Short-term forecasting of daily reference evapotranspiration using the Hargreaves-Samani model and temperature forecasts. Agric. Water Manag. 2014, 136, 42–51. [Google Scholar] [CrossRef]
- Perera, K.C.; Western, A.W.; Nawarathna, B.; George, B. Forecasting daily reference evapotranspiration for Australia using numerical weather prediction outputs. Agric. For. Meteorol. 2014, 194, 50–63. [Google Scholar] [CrossRef]
- Xiong, Y.; Luo, Y.; Wang, Y.; Traore, S.; Xu, J.; Jiao, X.; Fipps, G. Forecasting daily reference evapotranspiration using the Blaney-Criddle model and temperature forecasts. Arch. Agron. Soil. Sci. 2015, 62, 790–805. [Google Scholar] [CrossRef]
- Goh, E.H.; Ng, J.L.; Huang, Y.F.; Yong, S.L.S. Performance of potential evapotranspiration models in Peninsular Malaysia. J. Water Clim. Chang. 2021, 12, 3170–3186. [Google Scholar] [CrossRef]
- Fooladmand, H.R. Evaluation of some equations for estimating evapotranspiration in the south of Iran. Arch. Agron. Soil. Sci. 2011, 57, 741–752. [Google Scholar] [CrossRef]
- Hafeez, M.; Ahmad, C.Z.; Akhtar, K.A.; Bakhsh, G.A.; Basit, A.; Tahira, F. Comparative Analysis of Reference Evapotranspiration by Hargreaves and Blaney-Criddle Equations in Semi-Arid Climatic Conditions. Curr. Res. Agric. Sci. 2020, 7, 52–57. [Google Scholar] [CrossRef]
- Martinez, C.J.; Thepadia, M. Estimating Reference Evapotranspiration with Minimum Data in Florida. J. Irrig. Drain. Eng. 2010, 136, 494–501. [Google Scholar] [CrossRef]
- Tabari, H. Evaluation of Reference Crop Evapotranspiration Equations in Various Climates. Water Resour. Manag. 2010, 24, 2311–2337. [Google Scholar] [CrossRef]
- Lima, J.R.d.S.; Antonino, A.C.D.; Souza, E.S.d.; Hammecker, C.; Montenegro, S.M.G.L.; Lira, C.A.B.d.O. Calibration of Hargreaves-Samani Equation for Estimating Reference Evapotranspiration in Sub-Humid Region of Brazil. J. Water Resour. Prot. 2013, 5, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Temesgen, B.; Eching, S.; Davidoff, B.; Frame, K. Comparison of Some Reference Evapotranspiration Equations for California. J. Irrig. Drain. Eng. 2005, 131, 73–84. [Google Scholar] [CrossRef]
- Todorovic, M.; Karic, B.; Pereira, L.S. Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates. J. Hydrol. 2013, 481, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Shahidian, S.; Serralheiro, R.P.; Serrano, J.; Teixeira, J.L. Parametric calibration of the Hargreaves-Samani equation for use at new locations. Hydrol. Process. 2012, 27, 605–616. [Google Scholar] [CrossRef]
- Sepaskhah, A.R.; Razzaghi, F. Evaluation of the adjusted Thornthwaite and Hargreaves-Samani methods for estimation of daily evapotranspiration in a semi-arid region of Iran. Arch. Agron. Soil. Sci. 2009, 55, 51–66. [Google Scholar] [CrossRef]
- Hafeez, M.; Chatha, Z.A.; Bakhsh, A.; Basit, A.; Khan, A.A.; Tahira, F. Reference Evapotranspiration by Hargreaves and Modified Hargreaves Equations under Semi-Arid Environment. Curr. Res. Agric. Sci. 2020, 7, 58–63. [Google Scholar] [CrossRef]
- Martins, D.S.; Paredes, P.; Raziei, T.; Pires, C.; Cadima, J.; Pereira, L.S. Assessing reference evapotranspiration estimation from reanalysis weather products. An application to the Iberian Peninsula. Int. J. Climatol. 2016, 37, 2378–2397. [Google Scholar] [CrossRef]
- Paredes, P.; Martins, D.S.; Pereira, L.S.; Cadima, J.; Pires, C. Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes. Agric. Water Manag. 2018, 210, 340–353. [Google Scholar] [CrossRef]
- Pelosi, A.; Terribile, F.; D’Urso, G.; Chirico, G. Comparison of ERA5-Land and UERRA MESCAN-SURFEX Reanalysis Data with Spatially Interpolated Weather Observations for the Regional Assessment of Reference Evapotranspiration. Water 2020, 12, 1669. [Google Scholar] [CrossRef]
- Rodrigues, G.C.; Braga, R.P. Evaluation of NASA POWER Reanalysis Products to Estimate Daily Weather Variables in a Hot Summer Mediterranean Climate. Agronomy 2021, 11, 1207. [Google Scholar] [CrossRef]
- Park, J.; Choi, M. Estimation of evapotranspiration from ground-based meteorological data and global land data assimilation system (GLDAS). Stoch. Environ. Res. Risk Assess. 2015, 29, 1963–1992. [Google Scholar] [CrossRef]
- Tian, D.; Martinez, C.J.; Graham, W.D. Seasonal Prediction of Regional Reference Evapotranspiration Based on Climate Forecast System Version 2. J. Hydrometeorol. 2014, 15, 1166–1188. [Google Scholar] [CrossRef]
- Peters, L.C.D.; Kumar, S.V.; Mocko, D.M.; Tian, Y. Estimating evapotranspiration with land data assimilation systems. Hydrol. Process. 2011, 25, 3979–3992. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, D.J.; Roj, S.; Dunkerly, C.; McGraw, D.; Huntington, J.L.; Hobbins, M.T.; Ott, T. Validation and Bias Correction of Forecast Reference Evapotranspiration for Agricultural Applications in Nevada. J. Water Resour. Plan. Manag. 2022, 148, 04022057. [Google Scholar] [CrossRef]
- Blankenau, P.A.; Kilic, A.; Allen, R. An evaluation of gridded weather data sets for the purpose of estimating reference evapotranspiration in the United States. Agric. Water Manag. 2020, 242, 106376. [Google Scholar] [CrossRef]
- Ndiaye, P.M.; Bodian, A.; Diop, L.; Deme, A.; Dezetter, A.; Djaman, K.; Ogilvie, A. Trend and Sensitivity Analysis of Reference Evapotranspiration in the Senegal River Basin Using NASA Meteorological Data. Water 2020, 12, 1957. [Google Scholar] [CrossRef]
- Negm, A.; Jabro, J.; Provenzano, G. Assessing the suitability of American National Aeronautics and Space Administration (NASA) agro-climatology archive to predict daily meteorological variables and reference evapotranspiration in Sicily, Italy. Agric. For. Meteorol. 2017, 244–245, 111–121. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Singh, P.; Mall, R.K.; Pradhan, R.K.; Bray, M.; Gupta, A. Performance assessment of evapotranspiration estimated from different data sources over agricultural landscape in Northern India. Theor. Appl. Clim. 2020, 140, 145–156. [Google Scholar] [CrossRef]
- Rodrigues, G.C.; Braga, R.P. Estimation of Daily Reference Evapotranspiration from NASA POWER Reanalysis Products in a Hot Summer Mediterranean Climate. Agronomy 2021, 11, 2077. [Google Scholar] [CrossRef]
- Davis. Instrumentos Climáticos de Precisión. Catálogo Global. 2020. Available online: https://cdn.shopify.com/s/files/1/0515/5992/3873/files/Weather_Catalog_Spanish.pdf (accessed on 10 February 2020).
- Instituto Nacional de Estadística y Geografía (INEGI). Continuo de Elevaciones Mexicano (CEM 3.0), Coahuila. 2013. Available online: https://www.inegi.org.mx/app/geo2/elevacionesmex/ (accessed on 19 July 2023).
- Instituto Nacional de Estadística y Geografía (INEGI). Uso de Suelo y Vegetación, Conjunto de Datos Vectoriales de Uso del Suelo y Vegetación. Escala 1:250 000. Serie VII. 2018. Available online: https://www.inegi.org.mx/temas/usosuelo/ (accessed on 21 July 2023).
- White, J.W.; Hoogenboom, G.; Stackhouse, P.W.; Hoell, J.M. Evaluation of NASA satellite- and assimilation model-derived long-term daily temperature data over the continental US. Agric. For. Meteorol. 2008, 148, 1574–1584. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Chandler, W.S.; Hoell, J.M.; Westberg, D.; Whitlock, C.H.; Stackhouse, P.W. A Global Perspective on Renewable Energy Resources: Nasa’s Prediction of Worldwide Energy Resources (Power) Project. In Proceedings of the ISES World Congress 2007, Beijing, China, 18–21 September 2007; Springer: Berlin/Heidelberg, Germany, 2007; Volumes 1–5, pp. 2636–2640. [Google Scholar] [CrossRef]
- Monteiro, L.A.; Sentelhas, P.C.; Pedra, G.U. Assessment of NASA/POWER satellite-based weather system for Brazilian conditions and its impact on sugarcane yield simulation. Int. J. Climatol. 2017, 38, 1571–1581. [Google Scholar] [CrossRef]
- Zhang, T.; Stackhouse, P.W.; Gupta, S.K.; Cox, S.J.; Mikovitz, J.C. Validation and Analysis of the Release 3.0 of the NASA GEWEX Surface Radiation Budget Dataset. AIP Conf. Proc. 2009, 1100, 597–600. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration. Prediction of Worldwide Energy Resource. 2023. Available online: https://power.larc.nasa.gov/ (accessed on 18 March 2023).
- Allen, R.G.; Pruitt, W.O.; Businger, J.A.; Fritschen, L.J.; Jensen, M.E.; Quinn, F.H. Capítulo 4 Evaporation and Transpiration. In ASCE Handbook of Hydrology; American Society of Civil Engineers: Reston, VA, USA, 1996; pp. 125–252. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from ambient air temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Chávez, R.E.; González, C.G.; González, B.J.L.; Dzul, L.E.; Sánchez, C.I.; López, S.A.; Chávez, S.J.A. Uso de estaciones climatológicas automáticas y modelos matemáticos para determinar la evapotranspiración. Tecnol. Cienc. Agua 2013, 4, 115–126. Available online: https://www.scielo.org.mx/pdf/tca/v4n4/v4n4a7.pdf (accessed on 23 June 2022).
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; Irrigation and Drainage Paper FAO-24; FAO: Rome, Italy, 1977; Available online: https://www.fao.org/publications/card/en/c/6bae3071-5d7b-5206-af5c-c9bfa1d9d1fe/ (accessed on 29 May 2022).
- Silva, G.H.d.; Dias, S.H.B.; Ferreira, L.B.; Santos, J.É.O.; Cunha, F.F.d. Performance of different methods for reference evapotranspiration estimation in Jaíba, Brazil. Rev. Bras. Eng. Agríc. Amb. 2018, 22, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Debnath, S.; Adamala, S.; Raghuwanshi, N.S. Sensitivity Analysis of FAO-56 Penman-Monteith Method for Different Agro-ecological Regions of India. Environ. Process. 2015, 2, 689–704. [Google Scholar] [CrossRef]
- Jerszurki, D.; de Souza, J.L.M.; Ramos, S.L.d.C. Sensitivity of ASCE-Penman-Monteith reference evapotranspiration under different climate types in Brazil. Clim. Dyn. 2019, 53, 943–956. [Google Scholar] [CrossRef]
- Ndiaye, P.M.; Bodian, A.; Diop, L.; Djaman, K. Sensitivity Analysis of the Penman-Monteith Reference Evapotranspiration to Climatic Variables: Case of Burkina Faso. J. Water Resour. Prot. 2017, 9, 1364–1376. [Google Scholar] [CrossRef] [Green Version]
- Villa, C.A.O.; Ontiveros, C.R.E.; Ruíz, A.O.; González, S.A.; Quevedo, T.J.A.; Ordoñez, H.L.M. Spatio-temporal variation of reference evapotranspiration from empirical methods in Chihuahua, Mexico. Ing. Agrícola Biosist. 2021, 13, 95–115. [Google Scholar] [CrossRef]
- Maldonado, W.; Valeriano, T.T.B.; de Souza, R.G. EVAPO: A smartphone application to estimate potential evapotranspiration using cloud gridded meteorological data from NASA-POWER system. Comput. Electron. Agric. 2019, 156, 187–192. [Google Scholar] [CrossRef]
- Duarte, Y.C.N.; Sentelhas, P.C. NASA/POWER and DailyGridded weather datasets—How good they are for estimating maize yields in Brazil? Int. J. Biometeorol. 2020, 64, 319–329. [Google Scholar] [CrossRef]
- Quansah, A.D.; Dogbey, F.; Asilevi, P.J.; Boakye, P.; Darkwah, L.; Oduro, K.S.; Sokama, N.Y.A.; Mensah, P. Assessment of solar radiation resource from the NASA-POWER reanalysis products for tropical climates in Ghana towards clean energy application. Sci. Rep. 2022, 12, 10684. [Google Scholar] [CrossRef]
- De Pondeca, M.S.F.V.; Manikin, G.S.; DiMego, G.; Benjamin, S.G.; Parrish, D.F.; Purser, R.J.; Wan, S.W.; Horel, J.D.; Myrick, D.T.; Lin, Y.; et al. The Real-Time Mesoscale Analysis at NOAA’s National Centers for Environmental Prediction: Current Status and Development. Weather Forecast. 2011, 26, 593–612. [Google Scholar] [CrossRef]
- Najmaddin, P.M.; Whelan, M.J.; Balzter, H. Estimating Daily Reference Evapotranspiration in a Semi-Arid Region Using Remote Sensing Data. Remote Sens. 2017, 9, 779. [Google Scholar] [CrossRef] [Green Version]
- Texeira, P.; Pannunzio, A.; Brenner, J. Calibración de la ecuación de Hargreaves para el cálculo de la evapotranspiración de cultivo de referencia (ETo) en Salto, Uruguay. Rev. Climatol. 2021, 21, 80–88. Available online: https://rclimatol.eu/wp-content/uploads/2021/06/Articulo21g.pdf (accessed on 23 June 2023).
Land Use | Code | Surface (ha) | Coverage (%) |
---|---|---|---|
Human Settlements | AH | 1240.1 | 8.69 |
Barren Land | DV | 15.6 | 0.11 |
Annual and Semi-permanent Irrigated Agriculture | RAS | 10,166.6 | 71.21 |
Permanent Irrigated Agriculture | RP | 63.0 | 0.44 |
Semi-permanent Irrigated Agriculture | RS | 2521.3 | 17.66 |
Microphyllous Desert Scrub with Secondary Shrub Vegetation | Vsa/MDM | 237.1 | 1.66 |
Halophilous Xerophytic Vegetation with Secondary Shrub Vegetation | Vsa/VH | 32.9 | 0.23 |
Total | 14,276.7 | 100.00 |
Parameter | Feature |
---|---|
Data period | 1981 to date |
Geographic range | Global |
Download format | ASCII, CSV, GeoJSON, and NetCDF |
Temporal resolution | Daily |
Spatial resolution | 0.5° × 0.5° (55.56 km × 55.56 km cell) for temperature (T), relative humidity (RH), and wind speed (). 1.0° × 1.0° for solar radiation and extraterrestrial solar radiation data. |
Delayed data availability | Approximately two days for temperature, relative humidity, and wind speed, and five days for solar radiation data. |
Parameter | Equation | Optimal Value | |
---|---|---|---|
Coefficient of Determination () | (6) | 1 | |
Root Mean Error () | (7) | 0 | |
Estimate Error Percentage () | (8) | 0 | |
Mean Error Bias () | (9) | 0 | |
Concordance Index () | (10) | 1 | |
Correlation coefficient () | (11) | 1 | |
Reliability coefficient () | (12) | 1 | |
Regression coefficient () | (13) | 1 |
Variable | Evaluation Period: 26 February to 9 August 2021 | |||||||
---|---|---|---|---|---|---|---|---|
February | March | April | May | June | July | August | Total | |
(n = 3) | (n = 31) | (n = 30) | (n = 31) | (n = 30) | (n = 31) | (n = 9) | (n = 165) | |
ET0-PM (mm) | 11.7 | 179.0 | 191.3 | 214.4 | 196.7 | 187.8 | 49.1 | 1030.0 |
ET0-HS (mm) | 13.2 | 154.8 | 180.8 | 200.3 | 195.5 | 179.6 | 48.7 | 972.9 |
ET0-BC (mm) | 12.5 | 141.3 | 152.1 | 171.7 | 172.2 | 170.9 | 48.8 | 869.5 |
ET0-PM_NP (mm) | 13.4 | 183.7 | 204.8 | 242.7 | 238.5 | 203.5 | 52.3 | 1138.9 |
Climatic Variables | Coefficient of Determination (R2) | ||||
---|---|---|---|---|---|
Tmax_NP | Tmin_NP | RH_NP | WS_NP | SR_NP | |
Tmax_AWS | 0.76 | ||||
Tmin_AWS | 0.81 | ||||
RH_AWS | 0.80 | ||||
WS_AWS | 0.27 | ||||
SR_AWS | 0.45 |
Parameter | Methods | ||||||||
---|---|---|---|---|---|---|---|---|---|
HS | BC | PM_NP | HS | BC | PM_NP | HS | BC | PM_NP | |
Daily ET0 (n = 165) | 5-Day Mean ET0 (n = 33) | 5-Day Cumulative ET0 (n = 33) | |||||||
(Dimensionless) | 0.29 | 0.43 | 0.53 | 0.44 | 0.47 | 0.73 | 0.69 | 0.76 | 0.84 |
(mm d−1) | 1.1 | 1.3 | 1.2 | 0.7 | 1.1 | 0.9 | 3.8 | 5.8 | 4.6 |
(%) | 5.5 | 15.6 | 10.6 | 5.2 | 15.3 | 10.6 | 5.5 | 15.6 | 10.6 |
(mm d−1) | −0.35 | −0.97 | 0.66 | −0.32 | −0.95 | 0.66 | −1.73 | −4.86 | 3.30 |
(Dimensionless) | 0.94 | 0.99 | 0.98 | 0.85 | 1.00 | 0.94 | 0.86 | 1.00 | 0.94 |
(Dimensionless) | 0.54 | 0.65 | 0.73 | 0.66 | 0.69 | 0.85 | 0.83 | 0.87 | 0.91 |
(Dimensionless) | 0.51 | 0.65 | 0.72 | 0.56 | 0.66 | 0.81 | 0.71 | 0.83 | 0.86 |
(Dimensionless) | 0.9270 | 0.8257 | 1.0994 | 0.9416 | 0.8399 | 1.1073 | 0.9362 | 0.8349 | 1.1075 |
Parameter | Methods | |||||
---|---|---|---|---|---|---|
HS_NP | BC_NP | HS_NP | BC_NP | HS_NP | BC_NP | |
Daily ET0 (n = 165) | 5-Day Mean ET0 (n = 33) | 5-Day Cumulative ET0 (n = 33) | ||||
(Dimensionless) | 0.29 | 0.38 | 0.55 | 0.45 | 0.75 | 0.74 |
(mm d−1) | 1.1 | 1.3 | 0.6 | 1.1 | 3.3 | 5.7 |
(%) | 4.4 | 15.0 | 4.1 | 14.6 | 4.4 | 15.0 |
(mm d−1) | −0.28 | −0.93 | −0.26 | −0.91 | −1.38 | −4.67 |
(Dimensionless) | 0.54 | 0.61 | 0.74 | 0.67 | 0.87 | 0.86 |
(Dimensionless) | 2.435 | −0.359 | 1.623 | 0.732 | 2.647 | −1.700 |
(Dimensionless) | 0.638 | 1.244 | 0.770 | 1.033 | 0.957 | 1.240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Ramírez, G.; Bolaños-González, M.A.; Quevedo-Nolasco, A.; López-Pérez, A.; Estrada-Ávalos, J. Estimation of Reference Evapotranspiration in a Semi-Arid Region of Mexico. Sensors 2023, 23, 7007. https://doi.org/10.3390/s23157007
Delgado-Ramírez G, Bolaños-González MA, Quevedo-Nolasco A, López-Pérez A, Estrada-Ávalos J. Estimation of Reference Evapotranspiration in a Semi-Arid Region of Mexico. Sensors. 2023; 23(15):7007. https://doi.org/10.3390/s23157007
Chicago/Turabian StyleDelgado-Ramírez, Gerardo, Martín Alejandro Bolaños-González, Abel Quevedo-Nolasco, Adolfo López-Pérez, and Juan Estrada-Ávalos. 2023. "Estimation of Reference Evapotranspiration in a Semi-Arid Region of Mexico" Sensors 23, no. 15: 7007. https://doi.org/10.3390/s23157007
APA StyleDelgado-Ramírez, G., Bolaños-González, M. A., Quevedo-Nolasco, A., López-Pérez, A., & Estrada-Ávalos, J. (2023). Estimation of Reference Evapotranspiration in a Semi-Arid Region of Mexico. Sensors, 23(15), 7007. https://doi.org/10.3390/s23157007