Genetic Pool of the Cultivated Pear Tree (Pyrus spp.) in the Canary Islands (Spain), Studied Using SSR Molecular Markers
<p>Geographical locations of the 456 samples of pear tree (<span class="html-italic">Pyrus</span> spp.) included in this study. RPP1: reconstructed panmictic population unique to the Canary Islands; RPP2, RPP3: reconstructed panmictic populations identified in the northwestern Iberian Peninsula and the Canary Islands.</p> "> Figure 2
<p>Tenerife genotypes, classified in RPP1-3 and admixed, and their sampling locations in Tenerife, according to the chill portions (CP) of the dynamic model (Fishman et al., 1987) [<a href="#B20-agronomy-12-01711" class="html-bibr">20</a>].</p> "> Figure 3
<p>Dendogram for the 310 unique pear genotypes based on Jaccard’s coefficient with an indication of the reconstructed panmictic populations for K = 3 and 18 SSRs. The RPP number assigned by the STRUCTURE software is indicated before the genotype code/name.</p> "> Figure 4
<p>Representation of principal components (PCs) of reconstructed panmictic populations (RPP1 to RPP3) obtained with STRUCTURE using 18 SSRs and 310 pear genotypes.</p> "> Figure 5
<p>Three first principal components (PCs) of the PCoA for the genotypes differentiated with JC ≤ 0.13 and the RPPs using STRUCTURE for 310 pear genotypes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. DNA Extraction, PCR Reactions, Microsatellite Analysis and Genetic Diversity
2.3. Assessment of Population Structure
2.4. Genetic Similarity and Principal Component Analysis (PCoA)
3. Results
3.1. Microsatellite Analysis and Genetic Diversity
3.2. Population Structure
3.2.1. Diploids
3.2.2. Triploids
3.2.3. Genetic Diversity in Reconstructed Panmictic Populations (RPPs)
3.3. Genetic Similarity and Principal Component Analysis (PCoA)
4. Discussion
4.1. Clonality and Putative Triploids in the Canary Islands’ Genotypes
4.2. Bayesian Method Identified a Canarian Cluster of Pear Genotypes
4.3. Uniqueness of the Canary Islands’ Genotypes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. FAO Statistics Database on the World Wide. Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 27 June 2022).
- Wu, J.; Wang, Y.; Xu, J.; Korban, S.S.; Fei, Z.; Tao, S.; Ming, R.; Tai, S.; Khan, A.M.; Postman, J.D.; et al. Diversification and Independent Domestication of Asian and European Pears. Genome Biol. 2018, 19, 77. [Google Scholar] [CrossRef] [PubMed]
- Iglesias i Castellarnau, I.; Bonany Rocas, J.; Vilardell Coderch, P.; Ruiz, S. El Cultivo Del Peral En España. Rev. Frutic. 2015, 45, 6–33. [Google Scholar]
- Ruiz de Galarreta Gómez, J.I.; Prohens, J.; Tierno, R. Las Variedades Locales en la Mejora Genética de Plantas; Departamento de Desarrollo Económico y Competitividad, Servicio Central de Publicaciones del Gobierno Vasco: Vitoria-Gasteiz, Spain, 2016; ISBN 9788445733950. [Google Scholar]
- Deruwe, H. European Pear Crop Outlook 2018 a Quantitative and Qualitative Review. In Proceedings of the Prognosfruit, Warsaw, Poland, 8–10 August 2018. [Google Scholar]
- Bao, L.; Chen, K.; Zhang, D.; Cao, Y.; Yamamoto, T.; Teng, Y. Genetic Diversity and Similarity of Pear (Pyrus L.) Cultivars Native to East Asia Revealed by SSR (Simple Sequence Repeat) Markers. Genet. Resour. Crop Evol. 2007, 54, 959–971. [Google Scholar] [CrossRef]
- Miranda, C.; Urrestarazu, J.; Santesteban, L.G.; Royo, J.B.; Urbina, V. Genetic Diversity and Structure in a Collection of Ancient Spanish Pear Cultivars Assessed by Microsatellite Markers. J. Am. Soc. Hortic. Sci. 2010, 135, 428–437. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, A.R.F.; Ramos-Cabrer, A.M.; Díaz-Hernández, M.B.; Pereira-Lorenzo, S. Genetic Variability and Diversification Process in Local Pear Cultivars from Northwestern Spain Using Microsatellites. Tree Genet. Genomes 2011, 7, 1041–1056. [Google Scholar] [CrossRef]
- Queiroz, Á.; Guimarães, J.B.; Sánchez, C.; Simões, F.; de Sousa, R.M.; Viegas, W.; Veloso, M.M. Genetic Diversity and Structure of the Portuguese Pear (Pyrus communis L.) Germplasm. Sustainability 2019, 11, 5340. [Google Scholar] [CrossRef] [Green Version]
- Baccichet, I.; Foria, S.; Messina, R.; Peccol, E.; Losa, A.; Fabro, M.; Gori, G.; Zandigiacomo, P.; Cipriani, G.; Testolin, R. Genetic and Ploidy Diversity of Pear (Pyrus spp.) Germplasm of Friuli Venezia Giulia, Italy. Genet. Resour. Crop Evol. 2020, 67, 83–96. [Google Scholar] [CrossRef]
- Alonso Segura, J.M.; Espiau Ramırez, M.T.; Pina Sobrino, A.; Rubio-Cabetas, M.J.; Fernández i Martì, A. Genetic Diversity of the Spanish Pear Germplasm Collection Assessed by SSRs. Acta Hortic. 2021, 1303, 37–44. [Google Scholar] [CrossRef]
- Bielsa, F.J.; Irisarri, P.; Errea, P.; Pina, A. Genetic Diversity and Structure of Local Pear Cultivars from Mountainous Areas from Aragon (Northeastern Spain). Agronomy 2021, 11, 1778. [Google Scholar] [CrossRef]
- Islam, M.; Ahmad, H.; Khalid, A.N.; Inamullah; Mohammad, K.; Masood, R.; Akhtar, N.; Afradi, S.G.; Ahmad, I. Pear (Pyrus): Genetic Diversity and Their Conservation. Fresenius Environ. Bull. 2021, 30, 2333–2342. [Google Scholar]
- Sapkota, S.; Boggess, S.L.; Trigiano, R.N.; Klingeman, W.E.; Hadziabdic, D.; Coyle, D.R.; Nowicki, M. Microsatellite Loci Reveal High Genetic Diversity, Mutation, and Migration Rates as Invasion Drivers of Callery Pear (Pyrus calleryana) in the Southeastern United States. Front. Genet. 2022, 13, 861398. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Investigación y Tecnología Agraria. Inventario Nacional de Recursos Fitogenéticos. Available online: https://wwwx.inia.es/inventarionacional/Bus_genero.asp (accessed on 27 June 2022).
- Bataillon, M. La Isla de la Palma en 1561. Estampas Canarias de Juan Méndez Nieto; Instituto de Estudios Canarios: San Cristóbal de La Laguna, Spain, 1987. [Google Scholar]
- Frutuoso, G. Las Islas Canarias (De “Saudade da Terra”); Instituto de Estudios Canarios: San Cristóbal de La Laguna, Spain, 1964. [Google Scholar]
- Gómez Gómez, M.A. El Valle de Güímar en el Siglo XVI. Protocolos de Sancho de Urtarte; Ayuntamiento de Güímar: Santa Cruz de Tenerife, Spain, 2000; ISBN 84-923966-5-2. [Google Scholar]
- Afonso Morales, D.; Castro Martín, N.; González Díaz, A.J.; Lorenzo Rodríguez, R.; Medina Cabrera, C.E.; Monterrey Gutiérrez, A.B.; Morera Bello, M.E.; Ríos Mesa, D.J.; Tascón Rodríguez, C. Variedades Agrícolas Tradicionales de Tenerife y la Palma; ASAGA CANARIAS-AGRICOMAC: Santa Cruz de Tenerife, Spain, 2012. [Google Scholar]
- Velázquez Barrera, M.E.; López Frías, R.; Méndez Hernández, C. Medida del Frío Invernal en Tenerife en Base al Modelo Dinámico (Fishman et al., 1987); Servicio Técnico de Agricultura y Desarrollo Rural, Cabildo Insular de Tenerife: Santa Cruz de Tenerife, Spain, 2021. [Google Scholar]
- García Brunton, J.; Pérez Tornero, O.; Cos Terrer, J.E.; Ruiz García, L.; Sánchez López, E. Influencia del Cambio Climático en la Mejora Genética de Plantas; Spanish Society of Horticultural Sciences, Spanish Society of Genetics: Murcia, Spain, 2018; ISBN 978-84-948233-8. [Google Scholar]
- Pereira-Lorenzo, S.; Ramos-Cabrer, A.M.; Ferreira, V.; Díaz-Hernández, M.B.; Carnide, V.; Pinto-Carnide, O.; Rodrigues, R.; Velázquez-Barrera, M.E.; Rios-Mesa, D.; Ascasíbar-Errasti, J.; et al. Genetic Diversity and Core Collection of Malus × domestica in Northwestern Spain, Portugal and the Canary Islands by SSRs. Sci. Hortic. 2018, 240, 49–56. [Google Scholar] [CrossRef]
- dos Santos, A.R.F. Diversidad Genética de La Colección de Peral Del Centro de Investigaciones Agrarias de Mabegondo (CIAM, Xunta de Galicia). Ph.D. Thesis, Universidad de Santiago de Compostela, Lugo, Spain, 2011. [Google Scholar]
- Urrestarazu, J.; Royo, J.B.; Santesteban, L.G.; Miranda, C. Evaluating the Influence of the Microsatellite Marker Set on the Genetic Structure Inferred in Pyrus communis L. PLoS ONE 2015, 10, e0138417. [Google Scholar] [CrossRef] [Green Version]
- Aubakirova, K.; Omasheva, M.; Ryabushkina, N.; Tazhibaev, T.; Kampitova, G.; Galiakparov, N. Evaluation of Five Protocols for DNA Extraction from Leaves of Malus sieversii, Vitis vinifera, and Armeniaca vulgaris. Genet. Mol. Res. 2014, 13, 1278–1287. [Google Scholar] [CrossRef]
- Bokszczanin, K.; Przybyla, A.A. Copper (II) Acetate Improves the Quality of Pear (Pyrus) DNA during Extraction. Plant Mol. Biol. Report. 2006, 24, 249. [Google Scholar] [CrossRef]
- Reija Abelairas, P.A. Estudio de la Diversidad Genética del Manzano Cultivado en el Oeste de la Península Ibérica y Canarias. Bachelor’s Thesis, Universidad de Santiago de Compostela, Lugo, Spain, 2016. [Google Scholar]
- Liebhard, R.; Gianfranceschi, L.; Koller, B.; Ryder, C.D.; Tarchini, R.; van de Weg, E.; Gessler, C. Development and Characterisation of 140 New Microsatellites in Apple (Malus x Domestica Borkh.). Mol. Breed. 2002, 10, 217–241. [Google Scholar] [CrossRef]
- Vinatzer, B.A.; Patocchi, A.; Tartarini, S.; Gianfranceschi, L.; Sansavini, S.; Gessler, C. Isolation of Two Microsatellite Markers from BAC Clones of the Vf Scab Resistance Region and Molecular Characterization of Scab-Resistant Accessions in Malus Germplasm. Plant Breed. 2004, 123, 321–326. [Google Scholar] [CrossRef]
- Gianfranceschi, L.; Seglias, N.; Tarchini, R.; Komjanc, M.; Gessler, C. Simple Sequence Repeats for the Genetic Analysis of Apple. Theor. Appl. Genet. 1998, 96, 1069–1076. [Google Scholar] [CrossRef]
- Fernández-Fernández, F.; Harvey, N.G.; James, C.M. Isolation and Characterization of Polymorphic Microsatellite Markers from European Pear (Pyrus communis L.). Mol. Ecol. Notes 2006, 6, 1039–1041. [Google Scholar] [CrossRef]
- Hokanson, S.C.; Szewc-Mcfadden, A.K.; Lamboy, W.F.; Mcferson, J.R.; Lamboy, W.F. Communicated by P. M. A. Tigerstedt Microsatellite (SSR) Markers Reveal Genetic Identities, Genetic Diversity and Relationships in a Malus domestica Borkh. Core Subset Collection. Theor. Appl. Genet. 1998, 97, 671–683. [Google Scholar] [CrossRef]
- Evans, K.; Fernández-Fernández, F.; Govan, C. Harmonising Fingerprinting Protocols to Allow Comparisons between Germplasm Collections-Pyrus. Acta Hortic. 2009, 814, 103–106. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GENALEX 6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Lo, E.Y.; Stefanovic, S.; Dickinson, T.A. Population Genetic Structure of Diploid Sexual and Polyploid Apomictic Hawthorns (Crataegus; Rosaceae) in the Pacific Northwest. Mol. Ecol. 2009, 18, 1145–1160. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Ramos-Cabrer, A.M.; Carnide, V.; Pinto-Carnide, O.; Assunção, A.; Marreiros, A.; Rodrigues, R.; Pereira-Lorenzo, S.; Castro, I. Genetic Pool Structure of Local Apple Cultivars from Portugal Assessed by Microsatellites. Tree Genet. Genomes 2016, 12, 36. [Google Scholar] [CrossRef]
- Pereira-Lorenzo, S.; Urrestarazu, J.; Ramos-Cabrer, A.M.; Miranda, C.; Pina, A.; Dapena, E.; Moreno, M.A.; Errea, P.; Llamero, N.; Díaz-Hernández, M.B.; et al. Analysis of the Genetic Diversity and Structure of the Spanish Apple Genetic Resources Suggests the Existence of an Iberian Genepool. Ann. Appl. Biol. 2017, 171, 424–440. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the Number of Clusters of Individuals Using the Software STRUCTURE: A Simulation Study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Earl, D.A.; vonHoldt, B.M. STRUCTURE HARVESTER: A Website and Program for Visualizing STRUCTURE Output and Implementing the Evanno Method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Breton, C.; Tersac, M.; Bervillé, A. Genetic Diversity and Gene Flow between the Wild Olive (Oleaster, Olea europaea L.) and the Olive: Several Pleistocene Refuge Zones in the Mediterranean Basin Suggested by Simple Sequence Repeats Analysis. J. Biogeogr. 2006, 33, 1916–1928. [Google Scholar] [CrossRef]
- Pereira-Lorenzo, S.; Ramos-Cabrer, A.M.; González-Díaz, A.J.; Díaz-Hernández, M.B. Genetic Assessment of Local Apple Cultivars from La Palma, Spain, Using Simple Sequence Repeats (SSRs). Sci. Hortic. 2008, 117, 160–166. [Google Scholar] [CrossRef]
- Pereira-Lorenzo, S.; Costa, R.M.L.; Ramos-Cabrer, A.M.; Ribeiro, C.A.M.; da Silva, M.F.S.; Manzano, G.; Barreneche, T. Variation in Grafted European Chestnut and Hybrids by Microsatellites Reveals Two Main Origins in the Iberian Peninsula. Tree Genet. Genomes 2010, 6, 701–715. [Google Scholar] [CrossRef]
- Pereira-Lorenzo, S.; Costa, R.M.L.; Ramos-Cabrer, A.M.; Ciordia-Ara, M.; Ribeiro, C.A.M.; Borges, O.; Barreneche, T.; Donini, P. Chestnut Cultivar Diversification Process in the Iberian Peninsula, Canary Islands, and Azores. Genome 2011, 54, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Nei, M. Estimation of Average Heterozygosity and Genetic Distance from a Small Number of Individuals. Genetics 1978, 89, 583–590. [Google Scholar] [CrossRef]
- Meirmans, P.; van Tienderen, P. Genotype and Genodive: Two Programs for the Analysis of Genetic Diversity of Asexual Organisms. Mol. Ecol. Notes 2004, 4, 792–794. [Google Scholar] [CrossRef]
- Excoffier, L.; Laval, G.; Schneider, S. Arlequin (Version 3.0): An Integrated Software Package for Population Genetics Data Analysis. Evol. Bioinform. Online 2005, 1, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Michdakis, Y.; Excoffied, L. A Generic Estimation of Population Subdivision Using Distances Between Alleles With Special Reference for Microsatellite Loci. Genetics 1996, 142, 1061–1064. [Google Scholar] [CrossRef] [PubMed]
- Sokal, R.; Michener, C.A. A Statistical Method for Evaluating Systematic Relationships. Univ. Kans. Sci. Bull. 1958, 38, 1409–1438. [Google Scholar]
- Rohlf, F.J. NTSYS-Pc Version 2.2: Numerical Taxonomy and Multivariate Analysis System; Exeter Software: New York, NY, USA, 2021; ISBN 0-925031-31-3. [Google Scholar]
- Goodman, L.A. The Analysis of Multidimensional Contingency Tables When Some Variables Are Posterior to Others: A Modified Path Analysis Approach. Biometrika 1973, 60, 179–192. [Google Scholar] [CrossRef]
- Fernández-Otero, C.I.; Ramos-Cabrer, A.M.; López-Díaz, J.E.; Pereira-Lorenzo, S. Evaluating the Diversity of Ecotypes of Red Clover (Trifolium pratense l.) from Northwestern Spain by Phenotypic Traits and Microsatellites. Agronomy 2021, 11, 2275. [Google Scholar] [CrossRef]
- Pierantoni, L.; Cho, K.H.; Shin, L.S.; Chiodini, R.; Tartarini, S.; Dondini, L.; Kang, S.J.; Sansavini, S. Characterisation and Transferability of Apple SSRs to Two European Pear F1 Populations. Theor. Appl. Genet. 2004, 109, 1519–1524. [Google Scholar] [CrossRef]
- Alessandri, S.; Cabrer, A.M.R.; Martìn, M.A.; Mattioni, C.; Pereira-Lorenzo, S.; Dondini, L. Genetic Characterization of Italian and Spanish Wild and Domesticated Chestnut Trees. Sci. Hortic. 2022, 295, 110882. [Google Scholar] [CrossRef]
- Pérez, V.; Larrañaga, N.; Abdallah, D.; Wünsch, A.; Hormaza, J.I. Genetic Diversity of Local Peach (Prunus persica) Accessions from La Palma Island (Canary Islands, Spain). Agronomy 2020, 10, 457. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Lorenzo, S.; Belén Díaz-Hernández, M.; Ramos-Cabrer, A.M. Use of Highly Discriminating Morphological Characters and Isozymes in the Study of Spanish Chestnut Cultivars. J. Am. Soc. Hortic. Sci. 2006, 131, 770–779. [Google Scholar] [CrossRef] [Green Version]
- Wambulwa, M.C.; Fan, P.Z.; Milne, R.; Wu, Z.Y.; Luo, Y.H.; Wang, Y.H.; Wang, H.; Gao, L.M.; Xiahou, Z.Y.; Jin, Y.C.; et al. Genetic Analysis of Walnut Cultivars from Southwest China: Implications for Germplasm Improvement. Plant Divers. 2021. [Google Scholar] [CrossRef]
- Ferradini, N.; Lancioni, H.; Torricelli, R.; Russi, L.; Ragione, I.D.; Cardinali, I.; Marconi, G.; Gramaccia, M.; Concezzi, L.; Achilli, A.; et al. Characterization and Phylogenetic Analysis of Ancient Italian Landraces of Pear. Front. Plant Sci. 2017, 8, 751. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, A.; Assunção, A.; Ramadas, I.; Viegas, W.; Veloso, M.M. Molecular Characterization of Portuguese Pear Landraces (Pyrus communis L.) Using SSR Markers. Sci. Hortic. 2015, 183, 72–76. [Google Scholar] [CrossRef]
- Erez, A. Temperate Fruit Crops in Warm Climates; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Ministerio de Agricultura Pesca y Alimentación. Lista Española de Variedades Con Descripción Oficialmente Reconocida 2021. Available online: https://www.mapa.gob.es/es/agricultura/temas/medios-de-produccion/listadoespanoldevariedadescondorenero2021_tcm30-556166.pdf (accessed on 27 June 2022).
- Viera y Clavijo, J. Diccionario de Historia Natural de Las Islas Canarias. Tomo I; Real Sociedad Económica Amigos del País: Las Palmas de Gran Canaria, Spain, 1866. [Google Scholar]
- Hernández Hernández, J.M. Cartas de Medianeros de Tenerife (1769–1893); Academia Canaria de la Lengua: San Cristóbal de La Laguna, Spain, 2003; ISBN 978-8-4960-5911-5. [Google Scholar]
- Çoban, A. Genetic Characterization of Pear Cultivars (Pyrus communis) in Çoruh River Basin. Bachelor’s Thesis, Middle East Technical University, Ankara, Turkey, 2019. [Google Scholar]
- Bassil, N.; Hummer, K.E.; Postman, J.D.; Fazio, G.; Baldo, A.; Armas, I.; Williams, R. Nomenclature and Genetic Relationships of Apples and Pears from Terceira Island. Genet. Resour. Crop Evol. 2009, 56, 339–352. [Google Scholar] [CrossRef]
- Sau, S.; Pastore, C.; D’hallewin, G.; Dondini, L.; Bacchetta, G. Characterisation of Microsatellite Loci in Sardinian Pears (Pyrus communis L. and P. spinosa Forssk.). Sci. Hortic. 2020, 270, 109443. [Google Scholar] [CrossRef]
Locus | Allelic Range of Canarian Samples | Allelic Size (pb) | No. of Alleles from Canarian Samples | Total No. of Alleles |
---|---|---|---|---|
CH01d03 | 130–171 | 130, 132, 134, 136 3, 138, 140, 142, 145, 147, 149 2, 151 2, 153, 155, 157, 159, 161, 163, 167, 171, 179, 181, 183, 187, 189, 193 1, 195, 199, 201 | 15 | 28 |
CH01d08 | 239–300 | 239, 248, 252, 270, 276 1, 278, 279, 280 2, 282, 284, 286 3, 288, 290, 292, 294 3, 296 1, 300, 305 1 | 13 | 18 |
CH01d09 | 119–161 | 119, 126, 128, 130, 132 1, 134, 136, 138, 140 2, 142, 143, 145, 147, 149, 151 1, 153, 155 2, 157, 159, 161, 165, 170, 179 | 19 | 23 |
CH01f07a | 173–209 | 171, 173, 175, 177, 179, 181 2, 182, 184 1, 186, 188, 190, 192 1, 194 3, 197, 199 3, 201, 205, 207 2, 209, 211, 213, 215, 219 | 15 | 23 |
CH02b10 | 118–161 | 112 1, 116, 118 3, 120, 122 2, 124, 126, 128, 130, 132 2, 134, 136, 138 1, 141, 143, 145, 147 3, 149, 151, 153, 155, 159, 161 | 17 | 23 |
CH02c09 | 229–283 | 229, 231, 233 1, 235, 237, 239, 241, 243, 245 1, 247 2, 249 2, 251 3, 253 3, 255 2, 257, 267, 283 | 15 | 17 |
CH02c11 | 201–247 | 201, 205, 207, 209, 211, 215, 217, 219, 221, 223 13, 225 2, 227 12, 229, 231 3, 233, 235, 237 2, 239, 241, 243, 245, 247, 249 | 19 | 23 |
CH02d11 | 95–147 | 95, 99 2, 101 3, 103 3, 105, 107, 109, 111, 113, 115 2, 117, 119, 121, 123 1, 125, 127, 129, 137, 147, 153 | 14 | 20 |
CH03d12 | 92–159 | 92 3, 93 2, 95 1, 97 2, 101, 103 1, 106, 108 3, 110, 112 2, 114, 116, 118, 120, 122, 125, 127, 129, 132, 134, 139, 142, 149, 157, 159 | 15 | 25 |
CH03g07 | 204–266 | 200, 204, 206, 211, 215 3, 220 1, 222 1, 226, 228, 230, 232, 234, 236, 238, 242, 244, 245, 246, 248, 250 2, 252 2, 256, 258 2, 262, 264, 266, 268 | 16 | 27 |
CH04e03 | 180–213 | 177 3, 180 1, 186, 188 23, 190, 196, 198, 200, 203, 205, 207, 213 | 7 | 12 |
CH05a02a | 103–109 | 103, 105 12, 107 1, 109 | 4 | 4 |
CH05a02b | 111–131 | 111 2, 113 123, 115, 117, 119 3, 121, 123, 125 1, 127 3, 129, 131 | 10 | 11 |
CH05c06 | 79–114 | 79, 83 2, 87, 89, 91, 93, 95, 97 3, 101, 103 2, 105 2, 107, 111, 114 1, 117, 121 | 13 | 16 |
CH-Vf1 | 126–172 | 126, 128, 130 123, 132 1, 134, 138, 140, 142, 144, 146, 148, 150, 152, 154 3, 156, 158 2, 162 2, 172 | 17 | 18 |
EMPc11 | 136–157 | 123 1, 130, 134, 136, 138, 140 2, 142, 143 2, 144 23, 146, 149, 151, 153 2, 155, 157, 171 3 | 10 | 16 |
EMPc117 | 84–139 | 84, 88, 91 3, 93 12, 97, 99, 101 1, 103, 105 2, 107 3, 109, 111, 113, 115, 117, 119, 121, 123, 125, 139 | 17 | 20 |
GD142 | 126–184 | 126, 134, 138, 140 2, 143 2, 147 1, 150, 152, 154, 156, 158, 160, 162, 164, 166 1, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188 3, 198, 204 | 17 | 28 |
GD147 | 125–162 | 117, 125, 127, 129, 131 1, 133 1, 135 2, 137 2, 139 3, 141, 143, 146, 150, 154, 162 | 13 | 15 |
Total | 266 | 367 |
Locus | FIS | FIT | FST | Nm |
---|---|---|---|---|
CH01d03 | −0.09 | −0.05 | 0.04 | 6.11 |
CH01d08 | −0.09 | −0.05 | 0.04 | 7.24 |
CH01d09 | −0.01 | 0.04 | 0.05 | 5.90 |
CH01f07a | −0.03 | 0.03 | 0.06 | 8.28 |
CH02b10 | 0.15 | 0.20 | 0.06 | 5.98 |
CH02c09 | −0.03 | 0.02 | 0.05 | 4.21 |
CH02c11b | −0.09 | −0.04 | 0.05 | 4.76 |
CH02d11 | 0.09 | 0.14 | 0.06 | 6.51 |
CH03d12 | 0.06 | 0.11 | 0.05 | 4.47 |
CH03g07 | −0.04 | 0.00 | 0.04 | 4.13 |
CH04e03 | −0.02 | 0.01 | 0.03 | 4.43 |
CH05a02a | −0.45 | −0.42 | 0.02 | 3.14 |
CH05a02b | −0.37 | −0.28 | 0.07 | 4.39 |
CH05c06 | −0.01 | 0.03 | 0.04 | 10.00 |
CHVF1 | 0.09 | 0.16 | 0.07 | 3.48 |
EMPc11 | −0.14 | −0.10 | 0.03 | 3.31 |
EMPc117 | 0.10 | 0.15 | 0.05 | 4.39 |
GD142 | 0.02 | 0.08 | 0.07 | 6.67 |
GD147 | −0.08 | −0.04 | 0.04 | 4.32 |
Average | −0.05 | 0.00 | 0.05 | 5.36 |
K = 3, 12 SSRs | Total Number of Genotypes (% in Brackets) | Number of Canarian Genotypes | Number of Reference Genotypes | Number of Genotypes of Other Origins |
RPP1 (Canary Islands) qI 1 ≥ 0.8 | 39 (20.31%) | 39 | 0 | 0 |
RPP2 (‘Mantecosa Hardy’) qI 1 ≥ 0.8 | 71 (36.98%) | 5 | 11 | 55 |
RPP3 (Commercial) qI 1 ≥ 0.8 | 51 (26.56%) | 10 | 15 | 26 |
Admixed (qI 1 < 0.8) | 31 (16.15%) | 14 | 5 | 12 |
Total | 192 (100.00%) | 68 | 31 | 93 |
K = 3, 18 SSRs | Total Number of Genotypes (% in Brackets) | Number of Canarian Genotypes | Number of Reference Genotypes | Number of Genotypes of Other Origins |
RPP1 (Canary Islands) qI 1 ≥ 0.8 | 39 (20.31%) | 39 | 0 | 0 |
RPP2 (‘Mantecosa Hardy’) qI 1 ≥ 0.8 | 67 (34.90%) | 9 | 12 | 46 |
RPP3 (Commercial) qI 1 ≥ 0.8 | 53 (27.60%) | 12 | 15 | 26 |
Admixed (qI 1 < 0.8) | 33 (17.19%) | 8 | 4 | 21 |
Total | 192 (100.00%) | 68 | 31 | 93 |
K = 4, 12 SRRs | Total Number of Genotypes (% in Brackets) | Number of Canarian Genotypes | Number of Reference Genotypes | Number of Genotypes of Other Origins |
RPP1 (Canary Islands) qI 1 ≥ 0.8 | 36 (18.75%) | 36 | 0 | 0 |
RPP2.1 (Wild, other Pyrus) qI 1 ≥ 0.8 | 31 (16.15%) | 5 | 3 | 23 |
RPP2.2 (‘Mantecosa Hardy’) qI 1 ≥ 0.8 | 35 (18.23%) | 1 | 5 | 29 |
RPP3 (Commercial) qI 1 ≥ 0.8 | 48 (25.00%) | 9 | 15 | 24 |
Admixed (qI 1 < 0,8) | 42 (21.87%) | 17 | 8 | 17 |
Total | 192 (100.00%) | 68 | 31 | 93 |
K = 2, 12 SSRs | Total Number of Genotypes(% in Brackets) | Number of Canarian Genotypes | Number of Reference Genotypes |
RPP1 (Canary Islands) qI 1 ≥ 0.8 | 39 (39.39%) | 39 | 0 |
RPP2 (others) qI 1 ≥ 0.8 | 50 (50.51%) | 21 | 29 |
Admixed (qI 1 < 0.8) | 10 (10.10%) | 8 | 2 |
Total | 99 (100.00%) | 68 | 31 |
K = 2, 18 SSRs | Total Number of Genotypes(% in Brackets) | Number of Canarian Genotypes | Number of Reference Genotypes |
RPP1 (Canary Islands) qI 1 ≥ 0.8 | 39 (39.39%) | 39 | 0 |
RPP2 (others) qI 1 ≥ 0.8 | 52 (52.53%) | 23 | 29 |
Admixed (qI 1 < 0.8) | 8 (8.08%) | 6 | 2 |
Total | 99 (100.00%) | 68 | 31 |
K = 3, 12 SSRs | Total Number of Genotypes(% in Brackets) | Number of Canarian Genotypes | Number of Reference Genotypes |
RPP1 (Canary Islands) qI 1 ≥ 0.8 | 38 (38.38%) | 38 | 0 |
RPP2 (‘Mantecosa Hardy’) qI 1 ≥ 0.8 | 21 (21.21%) | 10 | 11 |
RPP3 (Commercial) qI 1 ≥ 0.8 | 25 (25.25%) | 10 | 15 |
Admixed (qI 1 < 0.8) | 15 (15.15%) | 10 | 5 |
Total | 99 (100.00%) | 68 | 31 |
K = 3, 18 SSRs | Total Number of Genotypes(% in Brackets) | Number of Canarian Genotypes | Number of Reference Genotypes |
RPP1 (Canary Islands) qI 1 ≥ 0.8 | 39 (39.39%) | 39 | 0 |
RPP2 (‘Mantecosa Hardy’) qI 1 ≥ 0.8 | 23 (23.23%) | 11 | 12 |
RPP3 (Commercial) qI 1 ≥ 0.8 | 22 (22.22%) | 7 | 15 |
Admixed (qI 1 < 0.8) | 15 (15.15%) | 11 | 4 |
Total | 99 (100.00%) | 68 | 31 |
K = 6, 18 SSRs | Total Number of Genotypes(% in Brackets) | Number of Canarian Genotypes | Number of Reference Genotypes |
RPP1.1 (Canary Islands 1) qI 1 ≥ 0.8 | 24 (24.24%) | 24 | 0 |
RPP1.2 (Canary Islands 2) qI 1 ≥ 0.8 | 12 (12.12%) | 12 | 0 |
RPP2.1 (Canary Islands 3) qI 1 ≥ 0.8 | 6 (6.06%) | 6 | 0 |
RPP2.2 (‘Mantecosa Hardy’) qI 1 ≥ 0.8 | 6 (6.06%) | 1 | 5 |
RPP2.3 (Pyrus pyrifolia) qI 1 ≥ 0.8 | 2 (2.02%) | 0 | 2 |
RPP3 (Commercial) qI 1 ≥ 0.8 | 22 (22.22%) | 7 | 15 |
Admixed (qI 1 < 0.8) | 27 (27.27%) | 18 | 9 |
Total | 99 (100.00%) | 68 | 31 |
K = 2, 12 SSRs | Total Number of Genotypes (% in Brackets) | Number of Canarian Genotypes | Number of Reference Genotypes | Number of Genotypes of Other Origins |
RPP1 (Canary Islands) qI 1 ≥ 0.8 | 34 (28.81%) | 33 | 0 | 1 |
RPP2 (others) qI 1 ≥ 0.8 | 77 (65.25%) | 17 | 14 | 46 |
Admixed (qI 1 < 0.8) | 7 (5.93%) | 2 | 0 | 5 |
Total | 118 (100.00%) | 52 | 14 | 52 |
K = 3, 12 SSRs | Total Number of Genotypes (% in Brackets) | Number of Canarian Genotypes | Number of Reference Genotypes | Number of Genotypes of Other Origins |
RPP1 (Canary Islands) qI 1 ≥ 0.8 | 33 (27.97%) | 32 | 0 | 1 |
RPP2 (‘Castel’, other Pyrus) qI 1 ≥ 0.8 | 29 (24.58%) | 4 | 6 | 19 |
RPP3 (Local varieties) qI 1 ≥ 0.8 | 40 (33.90%) | 12 | 8 | 20 |
Admixed (qI 1 < 0.8) | 16 (13.56%) | 4 | 0 | 12 |
Total | 118 (100.00%) | 52 | 14 | 52 |
K = 3, 18 SSRs | Total Number of Genotypes (% in Brackets) | Number of Canarian Genotypes | Number of Reference Genotypes | Number of Genotypes of Other Origins |
RPP1 (Canary Islands) qI 1 ≥ 0.8 | 31 (26.27%) | 31 | 0 | 0 |
RPP2 (‘Castel’, other Pyrus) qI 1 ≥ 0.8 | 33 (27.97%) | 6 | 6 | 21 |
RPP3 (Local varieties) qI 1 ≥ 0.8 | 32 (27.12%) | 9 | 5 | 18 |
Admixed (qI 1 < 0.8) | 22 (18.64%) | 6 | 3 | 13 |
Total | 118 (100.00%) | 52 | 14 | 52 |
RPP1 | RPP2 | RPP3 | Admixed | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ho | He | Ho | He | Ho | He | Ho | He | Ho | He | |
CH01d03 | 0.97 | 0.80 | 0.85 | 0.90 | 0.94 | 0.82 | 0.91 | 0.85 | 0.92 | 0.84 |
CH01d08 | 0.86 | 0.69 | 0.76 | 0.82 | 0.92 | 0.80 | 0.81 | 0.76 | 0.84 | 0.77 |
CH01d09 | 0.89 | 0.80 | 0.78 | 0.90 | 0.94 | 0.85 | 0.88 | 0.91 | 0.87 | 0.86 |
CH01f07a | 0.87 | 0.65 | 0.83 | 0.90 | 0.80 | 0.80 | 0.84 | 0.89 | 0.84 | 0.81 |
CH02b10 | 0.78 | 0.76 | 0.71 | 0.87 | 0.67 | 0.83 | 0.67 | 0.87 | 0.71 | 0.83 |
CH02c09 | 0.97 | 0.75 | 0.85 | 0.88 | 0.63 | 0.62 | 0.70 | 0.78 | 0.79 | 0.76 |
CH02c11b | 0.94 | 0.81 | 0.88 | 0.91 | 0.94 | 0.81 | 0.97 | 0.88 | 0.93 | 0.85 |
CH02d11 | 0.58 | 0.65 | 0.61 | 0.82 | 0.84 | 0.79 | 0.79 | 0.84 | 0.70 | 0.78 |
CH03d12 | 0.92 | 0.78 | 0.63 | 0.88 | 0.71 | 0.68 | 0.73 | 0.84 | 0.74 | 0.79 |
CH03g07 | 0.90 | 0.83 | 0.87 | 0.92 | 0.96 | 0.83 | 0.83 | 0.86 | 0.89 | 0.86 |
CH04e03 | 0.53 | 0.44 | 0.24 | 0.33 | 0.46 | 0.44 | 0.31 | 0.30 | 0.38 | 0.38 |
CH05a02a | 1.00 | 0.66 | 1.00 | 0.73 | 1.00 | 0.72 | 1.00 | 0.65 | 1.00 | 0.69 |
CH05a02b | 1.00 | 0.62 | 1.00 | 0.78 | 1.00 | 0.76 | 1.00 | 0.77 | 1.00 | 0.73 |
CH05c06 | 0.67 | 0.57 | 0.71 | 0.79 | 0.76 | 0.74 | 0.70 | 0.71 | 0.71 | 0.70 |
CHVF1 | 0.63 | 0.66 | 0.73 | 0.83 | 0.75 | 0.79 | 0.73 | 0.85 | 0.71 | 0.78 |
EMPc11 | 0.87 | 0.71 | 0.88 | 0.82 | 0.81 | 0.71 | 0.85 | 0.76 | 0.85 | 0.75 |
EMPc117 | 0.89 | 0.82 | 0.57 | 0.90 | 0.84 | 0.80 | 0.70 | 0.83 | 0.75 | 0.84 |
GD142 | 0.84 | 0.75 | 0.88 | 0.92 | 0.79 | 0.82 | 0.79 | 0.87 | 0.83 | 0.84 |
GD147 | 0.79 | 0.62 | 0.76 | 0.77 | 0.47 | 0.46 | 0.76 | 0.72 | 0.70 | 0.64 |
Average | 0.84 | 0.70 | 0.76 | 0.82 | 0.80 | 0.74 | 0.79 | 0.79 | 0.80 | 0.76 |
RPP1 (Canary Islands) | RPP2 (‘Mantecosa Hardy’) | RPP3 (Commercial) | Admixed | |
---|---|---|---|---|
0.068 *** | - | RPP2 (‘Mantecosa Hardy’) | ||
0.099 *** | 0.052 *** | - | RPP3 (Commercial) | |
0.051 *** | 0.011 *** | 0.026 *** | - | Admixed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velázquez-Barrera, M.E.; Ramos-Cabrer, A.M.; Pereira-Lorenzo, S.; Ríos-Mesa, D.J. Genetic Pool of the Cultivated Pear Tree (Pyrus spp.) in the Canary Islands (Spain), Studied Using SSR Molecular Markers. Agronomy 2022, 12, 1711. https://doi.org/10.3390/agronomy12071711
Velázquez-Barrera ME, Ramos-Cabrer AM, Pereira-Lorenzo S, Ríos-Mesa DJ. Genetic Pool of the Cultivated Pear Tree (Pyrus spp.) in the Canary Islands (Spain), Studied Using SSR Molecular Markers. Agronomy. 2022; 12(7):1711. https://doi.org/10.3390/agronomy12071711
Chicago/Turabian StyleVelázquez-Barrera, María Encarnación, Ana María Ramos-Cabrer, Santiago Pereira-Lorenzo, and Domingo José Ríos-Mesa. 2022. "Genetic Pool of the Cultivated Pear Tree (Pyrus spp.) in the Canary Islands (Spain), Studied Using SSR Molecular Markers" Agronomy 12, no. 7: 1711. https://doi.org/10.3390/agronomy12071711
APA StyleVelázquez-Barrera, M. E., Ramos-Cabrer, A. M., Pereira-Lorenzo, S., & Ríos-Mesa, D. J. (2022). Genetic Pool of the Cultivated Pear Tree (Pyrus spp.) in the Canary Islands (Spain), Studied Using SSR Molecular Markers. Agronomy, 12(7), 1711. https://doi.org/10.3390/agronomy12071711