Abstract
A set of 87 apple accessions, located in three Portuguese apple germplasm collections, plus eight reference cultivars, were analyzed using 16 SSRs with the aim of assessing their genetic diversity and structure and evaluating relationships among them. Among the accessions studied, 64 unique genotypes were identified, 51 diploids and 13 putative triploids, revealing 19 groups of synonyms and 4 of homonyms. The genetic analyses performed by Bayesian model-based clustering (Structure) revealed a clear differentiation of two major groups (RPP1 and RPP2), one of them (RPP1) corresponding to old local Portuguese accessions, some of them putatively derived from ancient hybridization with Reineta, and the second one (RPP2) including all reference accessions and local Portuguese accessions considered to be of more recent origin. These results were confirmed by factorial correspondence analysis (FCA) and molecular variance analysis (AMOVA) and are in accordance with the Jaccard coefficients. Results indicate that the Portuguese apple germplasm includes an important and distinct gene pool of cultivars with respect to reference international cultivars, being a relevant source of genetic diversity for present and future breeding programs, originated at least 200 years ago, when some of these cultivars were firstly named. Moreover, this study will be useful to improve the apple germplasm management and in the definition of a preservation strategy concerning the Portuguese apple landraces.
Similar content being viewed by others
References
Barata AM, Bettencourt E, Santos A et al (2008) The state of ex situ management. Instituto Nacional de Recursos Biológicos, Oeiras
Bassil N, Hummer K, Postman J et al (2009) Nomenclature and genetic relationships of apples and pears from Terceira Island. Genet Resour Crop Evol 56:339–352. doi:10.1007/s10722-008-9369-z
Belkhir K, Borsa P, Chikhi L et al (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations
Castro I, Martín JP, Ortiz JM, Pinto-Carnide O (2011) Varietal discrimination and genetic relationships of Vitis vinifera L. cultivars from two major Controlled Appellation (DOC) regions in Portugal. Sci Hortic 127:507–514. doi:10.1016/j.scienta.2010.11.018
Cornille A, Giraud T, Smulders MJM et al (2014) The domestication and evolutionary ecology of apples. Trends Genet 30:57–65. doi:10.1016/j.tig.2013.10.002
Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x
Evans KM, Fernández-Fernández F, Govan C (2009) Harmonising fingerprinting protocols to allow comparisons between germplasm collections—Pyrus. Acta Hortic 103–106. doi:10.17660/ActaHortic.2009.814.10
Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491. doi:10.1007/s00424-009-0730-7
Ferreira V, Pinto-Carnide O, Mota T et al (2015) Identification of minority grapevine cultivars from Vinhos Verdes Portuguese DOC Region. Vitis 54:53–58
Ferreira V, Fernandes F, Pinto-Carnide O et al (2016) Identification of Vitis vinifera L. grape berry skin color mutants and polyphenolic profile. Food Chem 194:117–127. doi:10.1016/j.foodchem.2015.07.142
Foroni I, Baptista C, Monteiro L et al (2012) The use of microsatellites to analyze relationships and to decipher homonyms and synonyms in Azorean apples (Malus × domestica Borkh.). Plant Syst Evol 298:1297–1313. doi:10.1007/s00606-012-0637-1
Gharghani A, Zamani Z, Talaie A et al (2009) Genetic identity and relationships of Iranian apple (Malus × domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet Resour Crop Evol 56:829–842. doi:10.1007/s10722-008-9404-0
Hardy OJ, Vekemans X (2002) Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi:10.1046/j.1471-8286.2002.00305.x
Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus x domestica borkh. core subset collection. Theor Appl Genet 97:671–683. doi:10.1007/s001220050943
Hummer KE, Janick J (2009) Rosaceae: taxonomy, economic importance, genomics. In: Folta KM, Gardiner SE (eds) Genetics and Genomics of Rosaceae. Springer, New York, pp 1–17
Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Fruit breeding. Wiley, New York, pp 1–76
Liang W, Dondini L, De Franceschi P et al (2015) Genetic diversity, population structure and construction of a core collection of apple cultivars from Italian germplasm. Plant Mol Biol Report 33:458–473. doi:10.1007/s11105-014-0754-9
Liebhard R, Gianfranceschi L, Koller B, et al (2002) Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol Breed 10:217–241. doi:10.1023/A:1020525906332
Lima JJ (1932) Método de caracterização das variedades de maçãs portuguesas ou tidas como tais. In: 2o congresso nacional de pomologia. Sociedade Pomológica Portuguesa, Lisboa, pp 38–335
Lo EYY, Stefanović S, Dickinson TA (2009) Population genetic structure of diploid sexual and polyploid apomictic hawthorns (Crataegus; Rosaceae) in the Pacific Northwest. Mol Ecol 18:1145–1160. doi:10.1111/j.1365-294X.2009.04091.x
Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: Two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794. doi:10.1111/j.1471-8286.2004.00770.x
Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142:1061–1064
Mota MC (1919) Catálogo geral de plantas, sementes e outros artigos. A Intermediária Limitada, Porto
Natividade JV (1922) A região de Alcobaça—Algumas notas para o estudo da sua agricultura, população e vida rural
Noiton DAM, Alspach PA (1996) Founding clones, inbreeding, coancestry, and status number of modern apple cultivars. J Am Soc Hortic Sci 121:773–782
Pereira BE (1962) A sidra no Norte de Portugal <Tratados de Antropologia e Etnologia>, Fase 3-4, Vol. XVIII, Porto, Soc, Portuguesa de Antropologia e Etnologia 1962, p. 362 e 366
Pereira-Lorenzo S, Ramos-Cabrer AM, González-Díaz AJ, Díaz-Hernández MB (2008) Genetic assessment of local apple cultivars from La Palma, Spain, using simple sequence repeats (SSRs). Sci Hortic 117:160–166. doi:10.1016/j.scienta.2008.03.033
Pereira-Lorenzo S, Costa RML, Ramos-Cabrer AM et al (2010) Variation in grafted European chestnut and hybrids by microsatellites reveals two main origins in the Iberian Peninsula. Tree Genet Genomes 6:701–715. doi:10.1007/s11295-010-0285-y
Pereira-Lorenzo S, Costa RML, Ramos-Cabrer AM et al (2011) Chestnut cultivar diversification process in the Iberian Peninsula, Canary Islands, and Azores. Genome 54:301–315. doi:10.1139/g10-122
Pina A, Urrestarazu J, Errea P (2014) Analysis of the genetic diversity of local apple cultivars from mountainous areas from Aragon (Northeastern Spain). Sci Hortic 174:1–9. doi:10.1016/j.scienta.2014.04.037
Potts SM, Han Y, Khan MA et al (2012) Genetic diversity and characterization of a core collection of Malus germplasm using simple sequence repeats (SSRs). Plant Mol Biol Report 30:827–837. doi:10.1007/s11105-011-0399-x
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
Queiroz A, Assunção A, Ramadas I et al (2015) Molecular characterization of Portuguese pear landraces (Pyrus communis L.) using SSR markers. Sci Hortic 183:72–76. doi:10.1016/j.scienta.2014.11.016
Ramos-Cabrer AM, Díaz-Hernández MB, Pereira-Lorenzo S (2007) Morphology and microsatellites in Spanish apple collections. J Hortic Sci Biotechnol 82:257–265
Robinson JP, Harris SA, Juniper BE (2001) Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh. Plant Syst Evol 226:35–58. doi:10.1007/s006060170072
Silfverberg-Dilworth E, Matasci CL, Van De Weg WE, et al (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet Genomes 2:202–224. doi:10.1007/s11295-006-0045-1
Sokal R, Michener C (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 28:1409–1438
Tessier C, David J, This P et al (1999) Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor Appl Genet 98:171–177. doi:10.1007/s001220051054
Urrestarazu J, Miranda C, Santesteban LG, Royo JB (2012) Genetic diversity and structure of local apple cultivars from Northeastern Spain assessed by microsatellite markers. Tree Genet Genomes 8:1163–1180. doi:10.1007/s11295-012-0502-y
van Treuren R, Kemp H, Ernsting G et al (2010) Microsatellite genotyping of apple (Malus × domestica Borkh.) genetic resources in the Netherlands: application in collection management and variety identification. Genet Resour Crop Evol 57:853–865. doi:10.1007/s10722-009-9525-0
Veloso MM, Duarte MC, Moreira P (2008) The state of in situ management. Instituto Nacional de Recursos Biológicos, Oeiras
Vinatzer BA, Patocchi A, Tartarini S, et al (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab-resistant accessions in Malus germplasm. Plant Breed 123:321–326. doi:10.1111/j.1439-0523.2004.00973.x
Wagner HW, Sefc KM (1999) IDENTITY., p 4.0
Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution (N Y) 38:1358. doi:10.2307/2408641
Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the Old World: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin, 4th edn. Oxford University Press, New York
Acknowledgments
This work was supported by European Investment Funds by FEDER/COMPETE/POCI–Competitiveness and Internationalization Operational Programme, under the Project POCI-01-0145-FEDER-006958, National Funds by FCT–Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013 and the scholarship SFRH/BD/96400/2013 and Galicia Norte Portugal European Grouping of Territorial Cooperation (GNP-EGTC) funds supporting an internship at University of Santiago de Compostela, under the IACOBUS program. The authors acknowledge the “Research Institute of Horticulture and Seeds” INRA, Agrocampus Ouest, University of Angers, for providing the eight reference DNA samples.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Data Archiving Statement
The authors declare that all the work described in this manuscript followed the standard Tree Genetics and Genomes policy. Our results are based on an original database of genetic profiles not submitted to a public database. Moreover, genetic profiles of our manuscript have been included as supplemental file.
Additional information
Communicated by E. Dirlewanger
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
Fig. 1—Dendrogram of genetic similarity generated using the Jaccard coefficient and the UPGMA method for the 141 accessions and 13 SSR loci. International reference cultivars are shown in italic and underlined; Spanish reference cultivars are shown in italic. (PDF 1232 kb)
ESM 2
Table 1—List of the 95 apple accessions studied, 87 Portuguese and 8 references, and allele sizes in base pairs at each of 16 microsatellite loci analyzed. (XLSX 38 kb)
Rights and permissions
About this article
Cite this article
Ferreira, V., Ramos-Cabrer, A.M., Carnide, V. et al. Genetic pool structure of local apple cultivars from Portugal assessed by microsatellites. Tree Genetics & Genomes 12, 36 (2016). https://doi.org/10.1007/s11295-016-0997-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11295-016-0997-8