Growth Parameters, Yield and Grain Quality of Different Winter Wheat Cultivars Using Strip Tillage in Relation to the Intensity of Post-Harvest Soil Cultivation
<p>Characteristics of treatments using different post-harvest cultivation.</p> "> Figure 2
<p>Characteristics of the cultivars used in the research.</p> "> Figure 3
<p>Plan of the applied experiment and combination of factors.</p> "> Figure 4
<p>Characteristics of the physicochemical properties of soil.</p> "> Figure 5
<p>Agricultural technology and fertilisation used in the conducted research.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Conditions and Setup of the Experiment
2.2. Dry Matter Yields at Selected Growth Stages
- -
- Bush stage BBCH 29
- -
- Stalking BBCH 32
- -
- Flowering BBCH 59
2.3. Yield Structure
2.4. Grain Quality
2.5. Statistical Analysis of the Results
3. Results and Discussion
3.1. Effects of Tillage Types on Wheat Growth Parameters
3.2. Effects of Tillage Types on Wheat Yield
3.3. Effects of Tillage Types on Wheat Grain Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Leghari, S.J.; Han, W.; Soomro, A.A.; Shoukat, M.R.; Zain, M.; Wei, Y.; Xu, Q.; Buriro, M.; Bhutto, T.M.; Soothar, R.K.; et al. Navigating water and nitrogen practices for sustainable wheat production by model-based optimization management systems: A case study of China and Pakistan. Agric. Water Manag. 2024, 300, 108917. [Google Scholar] [CrossRef]
- Kumar, A.; Sachan, S. An Empirical Analysis of Profitability of Wheat Cultivation. Think India J. 2019, 22, 263–277. [Google Scholar]
- Hyles, J.; Bloomfield, M.T.; Hunt, J.R.; Trethowan, R.M.; Trevaskis, B. Phenology and related traits for wheat adaptation. Heredity 2020, 125, 417–430. [Google Scholar] [CrossRef]
- Eurostat. 2022. Available online: https://ec.europa.eu (accessed on 27 July 2024).
- Langridge, P.; Alaux, M.; Almeida, N.F.; Ammar, K.; Baum, M.; Bekkaoui, F.; Bentley, A.R.; Beres, B.L.; Berger, B.; Braun, H.-J.; et al. Meeting the Challenges Facing Wheat Production: The Strategic Research Agenda of the Global Wheat Initiative. Agronomy 2022, 12, 2767. [Google Scholar] [CrossRef]
- Van den Putte, A.; Govers, G.; Diels, J.; Gillijns, K.; Demuzere, M. Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 2010, 33, 231–241. [Google Scholar] [CrossRef]
- Jaskulski, D.; Kotwica, K.; Jaskulska, I.; Piekarczyk, M.; Osiński, G.; Pochylski, B. Elementy współczesnych systemów uprawy roli i roślin–skutki produkcyjne oraz środowiskowe. Fragm. Agron. 2012, 29, 61–70. [Google Scholar]
- Jaskulska, I.; Jaskulski, D.; Kotwica, K.; Wasilewski, P.; Gałężewski, L. Effect of tillage simplifications on yield and grain quality of winter wheat after different previous crops. Acta Sci. Polonorum. Agric. 2013, 12, 37–44. [Google Scholar]
- Kotwica, K.; Jaskulska, I.; Galezewski, L.; Jaskulski, D.; Lamparski, R. The effect of tillage and management of post-harvest residues and biostymulant application on the yield of winter wheat in increasing monoculture. Acta Sci. Pol. Agric. 2014, 13, 65–76. [Google Scholar]
- Kotwica, K.; Gałęzewski, L.; Wilczewski, E.; Kubiak, W. Reduced Tillage, Application of Straw and Effective Microorganisms as Factors of Sustainable Agrotechnology in Winter Wheat Monoculture. Agronomy 2024, 14, 738. [Google Scholar] [CrossRef]
- Kumar, U.; Cheng, M.; Islam, M.J.; Maniruzzaman, M.; Nasreen, S.S.; Haque, M.E.; Hossain, M.B.; Jahiruddin, M.; Bell, R.W.; Jahangir, M.M.R. Retention of Crop Residue Increases Crop Productivity and Maintains Positive Sulfur Balance in Intensive Rice-Based Cropping Systems. J. Soil Sci. Plant Nutr. 2024, 1–12. [Google Scholar] [CrossRef]
- Yan, Y.; Li, H.; Zhang, M.; Liu, X.; Zhang, L.; Wang, Y.; Yang, M.; Cai, R. Straw Return or No Tillage? Comprehensive Meta-Analysis Based on Soil Organic Carbon Contents, Carbon Emissions, and Crop Yields in China. Agronomy 2024, 14, 2263. [Google Scholar] [CrossRef]
- Wade, T.; Claassen, R. No-Till or Strip-Till Use Varies by Region. Amber Waves 2016, C1. Available online: https://www.proquest.com/openview/43a856d4dfb759ff72e472df9a4646e8/1.pdf?pq-origsite=gscholar&cbl=42620 (accessed on 27 July 2024).
- Dou, S.; Wang, Z.; Tong, J.; Shang, Z.; Deng, A.; Song, Z.; Zhang, W. Strip tillage promotes crop yield in comparison with no tillage based on a meta-analysis. Soil Tillage Res. 2024, 240, 106085. [Google Scholar] [CrossRef]
- Dębska, B.; Jaskulska, I.; Jaskulski, D. Method of Tillage with the Factor Determining the Quality of Organic Matter. Agronomy 2020, 10, 1250. [Google Scholar] [CrossRef]
- Wojewódzki, P.P.; Kondratowicz-Maciejewska, K.; Dębska, B.; Jaskulska, I.; Jaskulski, D.; Pakuła, J. Luvisol soil macroaggregates under the influence of conventional, strip-till, and reduced tillage practice. Int. Agrophys. 2024, 38, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yang, C.; Liang, H.; Yang, Y.; Bu, K.; Dong, Y.; Hai, J. The Border Effects of Dry Matter, Photosynthetic Characteristics, and Yield Components of Wheat under Hole Sowing Condition. Agronomy 2023, 13, 766. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, W.; Zhang, X.; Li, L.; Kang, G.; Feng, W.; Guo, T. Effects of cultivation patterns on winter wheat root growth parameters and grain yield. Field Crops Res. 2014, 156, 208–218. [Google Scholar] [CrossRef]
- Fang, Y.; Du, Y.; Wang, J.; Wu, A.; Qiao, S.; Xu, B.; Zhang, S.; Siddique, K.H.M.; Chen, Y. Moderate drought stress affected root growth and grain yield in old, modern and newly released cultivars of winter wheat. Front. Plant Sci. 2017, 8, 672. [Google Scholar] [CrossRef] [PubMed]
- Slafer, G.A.; García, G.A.; Serrago, R.A.; Miralles, D.J. Physiological drivers of responses of grains per m2 to environmental and genetic factors in wheat. Field Crops Res. 2022, 285, 108593. [Google Scholar] [CrossRef]
- Fu, Y.Y.; Yang, G.J.; Wang, J.H.; Song, X.Y.; Feng, H.K. Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements. Comput. Electr. Agric. 2014, 100, 51–59. [Google Scholar] [CrossRef]
- Trethowan, R.M.; Mahmood, T.; Ali, Z.; Oldach, K.; Garcia, A.G. Breeding wheat cultivars better adapted to conservation agriculture. Field Crops Res. 2012, 132, 76–83. [Google Scholar] [CrossRef]
- Iqbal, M.M.; Khan, I.; Chattha, M.U.; Hassan, M.U.; Iqbal, M.; Farooq, M. Performance of Wheat Cultivars Under Different Tillage and Crop Establishment Methods. Int. J. Plant Prod. 2021, 16, 287–297. [Google Scholar] [CrossRef]
- Eitel, J.U.; Magney, T.S.; Vierling, L.A.; Brown, T.T.; Huggins, D.R. Lidar based biomass and crop nitrogen estimates for rapid, non-destructive assessment of wheat nitrogen status. Field Crops Res. 2014, 159, 21–32. [Google Scholar] [CrossRef]
- Schirrmann, M.; Hamdorf, A.; Garz, A.; Ustyuzhanin, A.; Dammer, K.-H. Estimating wheat biomass by combining image clustering with crop height. Comput. Electron. Agric. 2016, 121, 374–384. [Google Scholar] [CrossRef]
- Walter, J.; Edwards, J.; McDonald, G.; Kuchel, H. Photogrammetry for the estimation of wheat biomass and harvest index. Field Crops Res. 2018, 216, 165–174. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Shang, J.; Dong, T.; Tang, M.; Feng, S.; Cai, H. Improving winter wheat biomass and evapotranspiration simulation by assimilating leaf area index from spectral information into a crop growth model. Agric. Water Manag. 2021, 255, 107057. [Google Scholar] [CrossRef]
- Li, H.; Korohou, T.; Liu, Z.; Geng, J.; Ding, Q. Analysis of Multiangle Wheat Density Effects Based on Drill Single-Seed Seeding. Agriculture 2024, 14, 176. [Google Scholar] [CrossRef]
- Huang, H.; Huang, J.; Li, X.; Zhuo, W.; Wu, Y.; Niu, Q.; Su, W.; Yuan, W. A Dataset of Winter Wheat Aboveground Biomass in China during 2007–2015 Based on Data Assimilation. Sci. Data 2022, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yang, M.; Ma, L.; Zhang, T.; Qin, W.; Li, W.; Zhang, Y.; Sun, Z.; Wang, Z.; Li, F. Estimation of Above-Ground Biomass of Winter Wheat Based on Consumer-Grade Multi-Spectral UAV. Remote Sens. 2022, 14, 1251. [Google Scholar] [CrossRef]
- Łopatka, A.; Koza, P.; Suszek-Łopatka, B.; Siebielec, G.; Jadczyszyn, J. Assessment of soil impact on pre-and post-harvest NDVI extrema by machine learning. Soil Sci. Ann. 2024, 75, 189540. [Google Scholar] [CrossRef]
- Casadesús, J.; Villegas, D. Conventional digital cameras as a tool for assessing leaf area index and biomass for cereal breeding. J. Integr. Plant Biol. 2014, 56, 7–14. [Google Scholar] [CrossRef]
- ISO 21415-2:2015; Wheat and Wheat Flour—Gluten Content Part 2: Determination of Wet Gluten and Gluten Index by Me-chanical Means. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 5529; Wheat—Determination of the Sedimentation Index—Zeleny Test. International Organization for Standardization: Geneva, Switzerland, 2007.
- Donmez, E.; Sears, R.G.; Shroyer, J.P.; Paulsen, G.M. Genetic gain in yield attributes of winter wheat in the Great Plains. Crop Sci. 2001, 41, 1412–1419. [Google Scholar] [CrossRef]
- Jimenez-Berni, J.A.; Deery, D.M.; Pablo, R.L.; Condon, A.G.; Rebetzke, G.J.; James, R.A.; Bovill, W.D.; Furbank, R.T.; Sirault, X.R.R. High throughput determination of plant height, ground cover, and above-ground biomass in wheat with LiDAR. Front. Plant Sci. 2018, 9, 237. [Google Scholar] [CrossRef]
- Almeida, M.L.D.; Sangoi, L.; Merotto Jr, A.; Alves, A.C.; Nava, I.C.; Knopp, A.C. Tiller emission and dry mass accumulation of wheat cultivars under stress. Sci. Agric. 2004, 61, 266–270. [Google Scholar] [CrossRef]
- Hendriks, P.-W.; Gurusinghe, S.; Ryan, P.R.; Rebetzke, G.J.; Weston, L.A. Competitiveness of Early Vigour Wheat (Triticum aestivum L.) Genotypes Is Established at Early Growth Stages. Agronomy 2022, 12, 377. [Google Scholar] [CrossRef]
- Lipiec, J.; Nosalewicz, A. Wzrost pędów pszenicy w zależności od miejscowego zagęszczenia gleby. Acta Agrophysica 2002, 78, 151–157. [Google Scholar]
- Sha, Y.; Liu, Z.; Hao, Z.H.; Huang, Y.W.; Shao, H.; Feng, G.Z.; Chen, F.J.; Mi, G.H. Root growth, root senescence and root system architecture in maize under conservative strip tillage system. Plant Soil 2023, 495, 253–269. [Google Scholar] [CrossRef]
- Ali, S.; Xu, Y.; Jia, Q.; Ahmad, I.; Wei, T.; Ren, X.; Zhang, P.; Din, R.; Cai, T.; Jia, Z. Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions. Agric. Water Manag. 2018, 201, 207–218. [Google Scholar] [CrossRef]
- Saini, A.; Manuja, S.; Kumar, S.; Hafeez, A.; Ali, B.; Poczai, P. Impact of Cultivation Practices and Varieties on Productivity, Profitability, and Nutrient Uptake of Rice (Oryza sativa L.) and Wheat (Triticum aestivum L.) Cropping System in India. Agriculture 2022, 12, 1678. [Google Scholar] [CrossRef]
- Tazhibayeva, T.; Abugalieva, A.; Morgunov, A.; Kozhakhmetov, K. Introgressive forms-approach for biotechnology advance of winter wheat on environmental adaptability. Int. Multidiscip. Sci. GeoConference 2016, 1, 607–614. [Google Scholar]
- Mullan, D.J.; Reynolds, M.P. Quantifying genetic effects of ground cover on soil water evaporation using digital imaging. Funct. Plant Biol. 2010, 37, 703–712. [Google Scholar] [CrossRef]
- Yang, Y.; Wan, H.; Yang, F.; Xiao, C.; Li, J.; Ye, M.; Chen, C.; Deng, G.; Wang, Q.; Li, A.; et al. Mapping QTLs for enhancing early biomass derived from Aegilops tauschii in synthetic hexaploid wheat. PLoS ONE 2020, 15, e0234882. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Palta, J.; Prasad, P.V.V.; Siddique, K.H.M. Phenotypic variability in bread wheat root systems at the early vegetative stage. BMC Plant Biol. 2020, 20, 185. [Google Scholar] [CrossRef] [PubMed]
- Wilczewski, E.; Jug, I.; Lipiec, J.; Gałęzewski, L.; Đurđević, B.; Kocira, A.; Brozović, B.; Marković, M.; Jug, D. Tillage system regulates the soil moisture tension, penetration resistance and temperature responses to the temporal variability of precipitation during the growing season. Int. Agrophys. 2023, 37, 391–399. [Google Scholar] [CrossRef]
- Sha, Y.; Hao, Z.; Liu, Z.; Huang, Y.; Feng, G.; Chen, F.; Mi, G. Regulation of maize growth, nutrient accumulation and remobilization in relation to yield formation under strip-till system. Arch. Agron. Soil Sci. 2023, 69, 2615–2630. [Google Scholar] [CrossRef]
- Rieger, S.; Richner, W.; Streit, B.; Frossard, E.; Liedgens, M. Growth, yield, and yield components of winter wheat and the effects of tillage intensity, preceding crops, and N fertilisation. Eur. J. Agron. 2008, 28, 405–411. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Álvaro-Fuentes, J.; Hansen, N.C.; Lampurlanés, J.; Cantero-Martínez, C. Winter cereal root growth and aboveground–belowground biomass ratios as affected by site and tillage system in dryland Mediterranean conditions. Plant Soil 2014, 374, 925–939. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Yan, J. Contribution of green organs to grain weight in dryland wheat from the 1940s to the 2010s in Shaanxi Province, China. Sci. Rep. 2021, 11, 3377. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, X.; Ma, Q.; Li, F.; Tao, R.; Zhu, M.; Li, C.; Zhu, X.; Guo, W.; Ding, J. Tiller Fertility Is Critical for Improving Grain Yield, Photosynthesis, and Nitrogen Efficiency in Wheat. J. Integr. Agric. 2023, 22, 2054–2066. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Y.; Cheng, H.; Chang, L.; Chen, J.; Chai, S.; Li, M. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes. BMC Genet. 2016, 17, 94. [Google Scholar] [CrossRef]
- Subhani, G.M.; Chowdhry, M.A. Correlation and path coefficient analysis in bread wheat under drought stress and normal conditions. Pak. J. Biol. Sci. 2000, 3, 72–77. [Google Scholar] [CrossRef]
- Khanna-Chopra, R.; Singh, K.; Shukla, S.; Kadam, S.; Singh, N.K. QTLs for cell membrane stability and flag leaf area under drought stress in a wheat RIL population. J. Plant Biochem. Biotechnol. 2019, 29, 276–286. [Google Scholar] [CrossRef]
- Künzel, A.; Münzel, S.; Böttcher, F.; Spengler, D. Analysis of Weather-Related Growth Differences in Winter Wheat in a Three-Year Field Trial in North-East Germany. Agronomy 2021, 11, 1854. [Google Scholar] [CrossRef]
- Wilhelm, E.P.; Boulton, M.I.; Al-Kaff, N.; Balfourier, F.; Bordes, J.; Greenland, A.J.; Powell, W.; Mackay, I.J. Rht-1 and Ppd-D1 associations with height, GA sensitivity, and days to heading in a worldwide bread wheat collection. Appl. Genet. 2013, 126, 2233–2243. [Google Scholar] [CrossRef]
- Jensen, S.M.; Svensgaard, J.; Ritz, C. Estimation of the harvest index and the relative water content—Two examples of composite variables in agronomy. Eur. J. Agron. 2020, 112, 125962. [Google Scholar] [CrossRef]
- White, E.M.; Wilson, F.E.A. Responses of grain yield, biomass and harvest index and their rates of genetic progress to nitrogen availability in ten winter wheat varieties. Ir. J. Agric. Food Res. 2006, 45, 85–101. [Google Scholar]
- Porker, K.; Straight, M.; Hunt, J.R. Evaluation of G × E × M interactions to increase harvest index and yield of early sown wheat. Front. Plant Sci. 2020, 11, 994. [Google Scholar] [CrossRef] [PubMed]
- Jaskulska, I.; Jaskulski, D.; Różniak, M.; Radziemska, M.; Gałęzewski, L. Zonal Tillage as Innovative Element of the Technology of Growing Winter Wheat: A Field Experiment under Low Rainfall Conditions. Agriculture 2020, 10, 105. [Google Scholar] [CrossRef]
- Wesołowski, M.; Cierpiała, R. Plonowanie pszenicy ozimej w zależności od sposobu wykonania uprawy przedsiewnej. Fragm. Agron. 2011, 28, 106–118. [Google Scholar]
- Evers, T.; Millar, S. Cereal grain structure and development: Some implications for quality. J. Cereal Sci. 2002, 36, 261–284. [Google Scholar] [CrossRef]
- Philipp, N.; Weichert, H.; Bohra, U.; Weschke, W.; Schulthess, A.W.; Weber, H. Grain number and grain yield distribution along the spike remain stable despite breeding for high yield in winter wheat. PLoS ONE 2018, 13, e0205452. [Google Scholar] [CrossRef] [PubMed]
- Rachoń, L.; Bobryk-Mamczarz, A.; Kiełtyka-Dadasiewicz, A.; Woźniak, A.; Stojek, Z.; Zajdel-Stępień, P. Plonowanie i jakość wybranych gatunków i odmian pszenicy makaronowej. Cz. I. Plonowanie. Ann. UMCS Sect. E Agric. 2022, 77, 55–63. [Google Scholar] [CrossRef]
- Parylak, D.; Pytlarz, E. Skutki produkcyjne monokultury pszenicy ozimej w warunkach upraszczania uprawy roli. Fragm. Agron 2013, 30, 114–121. [Google Scholar]
- Mohammadi, R.; Rajabi, R.; Haghparast, R. On-farm assessment of agronomic performance of rainfed wheat cultivars under different tillage systems. Soil Tillage Res. 2024, 235, 105902. [Google Scholar] [CrossRef]
- Roohi, E.; Mohammadi, R.; Niane, A.A.; Vafabakhsh, J.; Roustaee, M.; Jalal Kamali, M.R.; Sohrabi, S.; Fatehi, S.; Tarimoradi, H. Genotype × tillage interaction and the performance of winter bread wheat genotypes in temperate and cold dryland conditions. J. Integr. Agric. 2022, 21, 3199–3215. [Google Scholar] [CrossRef]
- Herrera, J.M.; Verhulst, N.; Trethowan, R.M.; Stamp, P.; Govaerts, B. Insights into Genotype × Tillage Interaction Effects on the Grain Yield of Wheat and Maize. Crop Sci. 2013, 53, 1845–1859. [Google Scholar] [CrossRef]
- Gawęda, D.; Haliniarz, M. Grain Yield and Quality of Winter Wheat Depending on Previous Crop and Tillage System. Agriculture 2021, 11, 133. [Google Scholar] [CrossRef]
- Yousefian, M.; Shahbazi, F.; Hamidian, K. Crop Yield and Physicochemical Properties of Wheat Grains as Affected by Tillage Systems. Sustainability 2021, 13, 4781. [Google Scholar] [CrossRef]
- Woźniak, A.; Gos, M. Yield and quality of spring wheat and soil properties as affected by tillage system. Plant Soil Environ. 2014, 60, 141–145. [Google Scholar] [CrossRef]
- Taner, A.; Zafer, R.; Kaya, Y.; Gültekin, İ.; Partigöç, F. The effects of various tillage systems on grain yield, quality parameters and energy indices in winter wheat production under the rainfed conditions. Fresenius Environ. Bull. 2015, 24, 1463–1473. [Google Scholar]
- Stępniewska, S.; Abramczyk, D. The correlation between quality parameters of selected winter wheat grain. Postępy Nauk. I Technol. Przemysłu Rolno-Spożywczego 2013, 1, 65–78. [Google Scholar]
- Stępniewska, S.; Słowik, E. Ocena wartości technologicznej wybranych odmian pszenicy ozimej i jarej. Acta Agrophys. 2016, 23, 275–286. [Google Scholar]
- Noworól, M. Reakcja Odmian Pszenicy Ozimej na Poziom Intensywności Technologii Produkcji. Ph.D. Thesis, UR Rzeszów, Rzeszów, Poland, 2018. [Google Scholar]
- Bobryk-Mamczarz, A.; Rachoń, L.; Kiełtyka-Dadasiewicz, A.; Szydłowska-Tutaj, M.; Lewko, P.; Woźniak, A. Plonowanie i jakość wybranych gatunków i odmian pszenicy makaronowej. Cz. II. Wartość technologiczna ziarna. Agron. Sci. 2022, 77, 65–78. [Google Scholar] [CrossRef]
- Šíp, V.; Vavera, R.; Chrpová, J.; Kusá, H.; Růžek, P. Winter wheat yield and quality related to tillage practice, input level and environmental conditions. Soil Tillage Res. 2013, 132, 77–85. [Google Scholar] [CrossRef]
- Woźniak, A.; Rachoń, L. Effect of Tillage Systems on the Yield and Quality of Winter Wheat Grain and Soil Properties. Agriculture 2020, 10, 405. [Google Scholar] [CrossRef]
- Amato, G.; Di Miceli, G.; Frenda, A.S.; Giambalvo, D.; Stringi, L. Wheat yield and grain quality as affected by tillage, sowing time and nitrogen fertilization under rainfed Mediterranean conditions. Options Méditerr 2004, 60, 151–155. [Google Scholar]
- Konavko, A.; Ruža, A. Influence of tillage and crop rotation on winter wheat grain quality. In Proceedings of the Scientific and Practical Conference “Harmonious Agriculture”, Jelgava, Latvia, 23 February 2017; pp. 50–54. [Google Scholar]
- Simic, G.; Horvat, D.; Jurkovic, Z.; Drezner, G.; Novoselovic, D.; Dvojkovic, K. The genotype effect on the ratio of wet gluten content to total wheat grain protein. J. Cent. Eur. Agric. 2006, 7, 13–18. [Google Scholar]
- Amiri, R.; Sasani, S.; Jalali-Honarmand, S.; Rasaei, A.; Seifolahpour, B.; Bahraminejad, S. Genetic diversity of bread wheat genotypes in Iran for some nutritional value and baking quality traits. Physiol. Mol. Biol. Plants 2018, 24, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Desheva, G.; Deshev, M. Correlation and Regression Relationships between Main Grain Quality Characteristics in Bread Winter Wheat. Agric. Conspec. Sci. 2022, 87, 135–143. [Google Scholar]
- Pengpeng, L.; Wei, S.; Hongjun, X.U.; Fengjuan, C.; Xinnian, H.; Yingbin, N.; Dezhen, K.; Bo, Z.; Peiyuan, M.U. Effects of Genotype and Environment on Protein Qualities of Winter Wheat in Xinjiang. Xinjiang Agric. Sci. 2022, 59, 45–54. [Google Scholar] [CrossRef]
- Weber, R. Influence of tillage system and stubble height on grain properties of selected winter wheat cultivars. Nauka Przyr. Technol. 2013, 7, 18–23. [Google Scholar]
- Buczek, J. Quality and productivity of hybrid wheat depending on the tillage practices. Plant Soil Environ. 2020, 66, 415–420. [Google Scholar] [CrossRef]
- Johansson, E.; Prieto-Linde, M.L.; Svensson, G. Influence of Nitrogen Application Rate and Timing on Grain Protein Composition and Gluten Strength in Swedish Wheat Cultivars. J. Plant Nutr. Soil. Sci. 2004, 167, 345–350. [Google Scholar] [CrossRef]
- Liu, D.; Shi, Y. Effects of different nitrogen fertilizer on quality and yield in winter wheat. Adv. J. Food Sci. Technol. 2013, 5, 646–649. [Google Scholar] [CrossRef]
- Gagliardi, A.; Carucci, F.; Masci, S.; Flagella, Z.; Gatta, G.; Giuliani, M.M. Effects of Genotype, Growing Season and Nitrogen Level on Gluten Protein Assembly of Durum Wheat Grown under Mediterranean Conditions. Agronomy 2020, 10, 755. [Google Scholar] [CrossRef]
- Buczek, J.; Migut, D.; Jańczak-Pieniążek, M. Effect of Soil Tillage Practice on Photosynthesis, Grain Yield and Quality of Hybrid Winter Wheat. Agriculture 2021, 11, 479. [Google Scholar] [CrossRef]
- Šekularac, A.; Torbica, A.; Živančev, D.; Tomić, J.; Knežević, D. The influence of wheat genotype and environmental factors on gluten index and the possibility of its use as bread quality predictor. Genetika 2018, 50, 85–93. [Google Scholar] [CrossRef]
- Mahdavi, S.; Arzani, A.; Mirmohammady Maibody, S.A.M.; Kadivar, M. Grain and flour quality of wheat genotypes grown under heat stress. Saudi J. Biol. Sci. 2022, 29, 103417. [Google Scholar] [CrossRef] [PubMed]
- Knapowski, T.; Ralcewicz, M.; Spychaj-Fabisiak, E.; Ložek, O. Ocena jakości ziarna pszenicy ozimej uprawianej w warunkach zróżnicowanego nawożenia azotem. Fragm. Agron. 2010, 27, 73–80. [Google Scholar]
- Murawska, B.; Spychaj-Fabisiak, E.; Keutgen, A.; Wszelaczyńska, E.; Pobereżny, J. Cechy technologiczne badanych odmian ziarna pszenicy ozimej uprawianych w warunkach Polski i Wielkiej Brytanii. Inż. Ap. Chem. 2014, 53, 96–98. [Google Scholar]
- Bilalis, D.; Karkanis, A.; Patsiali, S.; Agriogianni, M.; Konstantas, A.; Triantafyllidis, V. Performance of wheat varieties (Triticum aestivum, L.) under conservation tillage practices in organic agriculture. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 28. [Google Scholar] [CrossRef]
- Li, Y.; Huang, C.; Sui, X.; Fan, Q.; Li, G.; Chu, X. Genetic variation of wheat glutenin subunits between landraces and varieties and their contributions to wheat quality improvement in China. Euphytica 2009, 169, 159–168. [Google Scholar] [CrossRef]
- Zecevic, V.; Knezevic, D.; Boskovic, J.; Madic, M. Effect of Genotype and Environment on Wheat Quality. Genetika 2009, 41, 247–253. [Google Scholar] [CrossRef]
- Zecevic, V.; Boskovic, J.; Knezevic, D.; Micanovic, D.; Milenkovic, S. Influence of cultivar and growing season on quality properties of winter wheat (Triticum aestivum L.). Afr. J. Agric. Res. 2013, 8, 2545–2550. [Google Scholar]
- Tatar, O.; Cakalogullari, U.; Aykut Tonk, F.; Istipliler, D.; Karakoc, R. Effect of Drought Stress on Yield and Quality Traits of Common Wheat During Grain Filling Stage. Turk. J. Field Crops 2020, 25, 236–244. [Google Scholar] [CrossRef]
- ISO 3093:2009; Wheat, Rye and Their Flours, Durum Wheat and Durum Wheat Semolina—Determination of the Falling Number According to Hagberg-Perten. International Organization for Standardization: Geneva, Switzerland, 2009.
- Knapowski, T.; Kozera, W.; Murawska, B.; Wszelaczyńska, E.; Pobereżny, J.; Mozolewski, W.; Keutgen, A.J. Ocena parametrów technologicznych wybranych odmian pszenicy ozimej pod względem wypiekowym. Inżynieria I Apar. Chem. 2015, 5, 255–256. [Google Scholar]
- Dojczew, D. Wpływ czasu porastania ziarniaków na wartość technologiczną mąki pszennej. Postępy Tech. Przetwórstwa Spożywczego 2010, 1, 31–35. [Google Scholar]
Temperature °C | Precipitation (mm) | |||||||
---|---|---|---|---|---|---|---|---|
Growing Season | Multi-Year Average | Growing Season | Multi-Year Average | |||||
Month | 2018/2019 | 2019/2020 | 2020/2021 | 1981–2010 | 2018/2019 | 2019/2020 | 2020/2021 | 1981–2010 |
September | 15.5 | 14.4 | 14.9 | 13.3 | 48.0 | 57.8 | 102.0 | 55.0 |
October | 10.0 | 10.8 | 10.4 | 8.0 | 40.5 | 33.5 | 90.0 | 44.0 |
December | 4.2 | 6.4 | 5.1 | 2.7 | 8.9 | 31.4 | 14.0 | 39.0 |
November | 0.9 | 3.1 | 1.7 | −1.4 | 61.0 | 47.9 | 19.0 | 37.0 |
January | −2.4 | 1.7 | −1.4 | −3.3 | 62.0 | 27.1 | 51.0 | 31.0 |
February | 2.9 | 3.4 | −2.7 | −2.3 | 15.2 | 56.5 | 38.0 | 30.0 |
March | 5.7 | 4.7 | 2.8 | 1.6 | 20.9 | 16.7 | 12.0 | 30.0 |
April | 10.0 | 8.9 | 6.9 | 8.7 | 39.0 | 14.4 | 50.0 | 39.0 |
May | 13.9 | 11.9 | 12.9 | 14.5 | 69.0 | 93.9 | 61.0 | 58.0 |
June | 22.7 | 19.1 | 20.0 | 17.2 | 37.0 | 159.0 | 53.0 | 65.0 |
July | 19.4 | 19.3 | 22.2 | 19.5 | 71.0 | 31.9 | 110.0 | 80.0 |
August | 20.4 | 20.3 | 17.1 | 17.8 | 94.3 | 95.5 | 219.0 | 87.0 |
Specification | Development Phase | ||
---|---|---|---|
Tillering | Stem Formation | Beginning of Earing | |
Cultivation system | |||
Ploughed tillage + strip tillage (PT) | 97 a | 434 a | 1207 a |
Stubble discing + strip tillage (SD) | 101 a | 413 a b | 1151 b |
Strip tillage (ST) | 103 a | 405 b | 1157 b |
Cultivar | |||
Formacja | 90 b | 413 b | 1181 a |
Metronom | 116 a | 431 a | 1222 a |
Desamo | 105 b | 408 b | 1112 b |
Years | |||
2019 | 85 b | 358 c | 1329 a |
2020 | 88 b | 501 a | 987 c |
2021 | 128 a | 394 b | 1196 b |
Factor interaction | |||
T | ns | * | * |
C | *** | ns | *** |
Y | *** | *** | *** |
T × C | ns | ns | ** |
T × Y | *** | * | ** |
C × Y | ** | *** | ** |
T × C × Y | ** | * | *** |
Specification | Flag Leaf Area (cm2) |
---|---|
Cultivation system | |
Ploughed tillage + strip tillage (PT) | 22.5 a |
Stubble discing + strip tillage (SD) | 22.7 a |
Strip tillage (ST) | 23.2 a |
Cultivar | |
Formacja | 25.5 a |
Metronom | 25.3 a |
Desamo | 24.9 a |
Years | |
2019 | 20.1 c |
2020 | 23.2 a |
2021 | 21.6 b |
Factor interaction | |
T | ns |
C | ns |
Y | *** |
T × C | ns |
T × Y | ns |
C × Y | * |
T × C × Y | * |
Specification | Development Phase | ||
---|---|---|---|
Tillering | Stem Formation | Beginning of Earing | |
Cultivation system | |||
Ploughed tillage + strip tillage (PT) | 27.3 a | 51.2 a | 86.9 b |
Stubble discing + strip tillage (SD) | 26.9 a | 50.6 a | 86.3 b |
Strip tillage (ST) | 27.7 a | 53.4 a | 90.1 a |
Cultivar | |||
Formacja | 26.2 a | 50.9 a | 89.3 a |
Metronom | 28.6 a | 52.2 a | 85.4 a |
Desamo | 26.6 a | 50.5 a | 93.2 a |
Years | |||
2019 | 27.0 a | 50.6 b | 91.2 b |
2020 | 25.9 a | 64.7 a | 97.1 a |
2021 | 19.0 b | 41.1 c | 61.2 c |
Factor interaction | |||
T | *** | *** | *** |
C | *** | *** | *** |
Y | *** | *** | *** |
T × C | * | ns | *** |
T × Y | *** | *** | *** |
C × Y | *** | *** | *** |
T × C × Y | *** | *** | *** |
Grain Weight g∙m−2 | Straw Weight g∙m−2 | Harvest Index (%) | |
---|---|---|---|
Cultivation system | |||
Ploughed tillage + strip tillage (PT) | 970.7 a | 953.2 a | 0.51 a |
Stubble discing + strip tillage (SD) | 886.3 b | 891.9 a b | 0.50 a |
Strip tillage (ST) | 881.0 b | 861.8 b | 0.51 a |
Cultivar | |||
Formacja | 955.0 a | 887.4 a | 0.52 a |
Metronom | 916.4 a b | 890.7 a | 0.51 a |
Desamo | 866.7 b | 928.8 a | 0.49 a |
Years | |||
2019 | 1027.0 a | 981.4 b | 0.52 a |
2020 | 925.6 b | 1066.4 a | 0.47 b |
2021 | 785.5 c | 659.0 c | 0.55 a |
Factor interaction | |||
T | *** | ** | ns |
C | * | ns | *** |
Y | *** | *** | *** |
T × C | ns | ns | ns |
T × Y | ns | *** | *** |
C × Y | ns | * | *** |
T × C × Y | ns | ns | ns |
Specification | Tillering Index | Plant Density (pcs∙m−2 ) | Number of Ears (pcs∙m−2 ) | Weight of Kernels per Ear (g) | Yield (t∙ha−1) |
---|---|---|---|---|---|
Cultivation system | |||||
Ploughed tillage + strip tillage (PT) | 2.2 a | 284 a | 477 a | 1.87 a | 7.88 a |
Stubble discing + strip tillage (SD) | 1.9 a | 279 a | 478 a | 1.63 b | 7.41 b |
Strip tillage (ST) | 2.1 a | 267 a | 490 a | 1.62 b | 7.16 b |
Cultivar | |||||
Formacja | 2.1 a | 273 a | 469 a | 1.75 a | 7.68 a |
Metronom | 2.1 a | 278 a | 488 a | 1.78 a | 7.53 a |
Desamo | 2.2 a | 282 a | 488 a | 1.59 b | 7.24 b |
Years | |||||
2019 | 1.6 c | 310 a | 505 a | 1.82 a | 8.10 a |
2020 | 2.3 b | 260 b | 482 b | 1.64 b | 7.73 b |
2021 | 2.5 a | 262 b | 458 b | 1.66 b | 6.62 c |
Factor interaction | |||||
T | ns | ns | ns | *** | ns |
C | ns | ns | ns | *** | ns |
Y | *** | *** | *** | *** | ns |
T × C | ns | ns | ns | ** | ns |
T × Y | * | ns | * | ns | ns |
C × Y | * | ns | *** | ns | ns |
T × C × Y | * | ns | ns | * | ns |
Specification | Thousand Grain Weight (g) | Bulk Density of Grain (kg∙hl−1) | Amount of Gluten (%) | Gluten Index (%) | Sedimentation Index Zeleny (cm3) | Falling Number (s) |
---|---|---|---|---|---|---|
Cultivation system | ||||||
Ploughed tillage + strip tillage (PT) | 39.2 a | 74.3 a | 33.7 a | 66 a | 46 c | 358 a |
Stubble discing + strip tillage (SD) | 37.9 b | 72.1 a | 33.6 a | 66 a | 49 b | 361 a |
Strip tillage (ST) | 36.1 c | 71.9 a | 34.0 a | 63 a | 53 a | 374 a |
Cultivar | ||||||
Formacja | 37.9 b | 76.0 a | 30.9 c | 81 a | 47 b | 365 b |
Metronom | 41.5 a | 72.7 b | 34.2 b | 59 b | 59 a | 321 c |
Desamo | 33.8 c | 69.5 c | 35.9 a | 55 c | 42 c | 404 a |
Years | ||||||
2019 | 37.9 a | 72.3 b | 30.5 c | 68 a | 39 c | 371 a |
2020 | 37.8 a | 69.5 c | 36.8 a | 62 b | 60 a | 363 a |
2021 | 38.0 a | 77.6 a | 33.7 b | 66 a | 49 b | 358 a |
Factor interaction | ||||||
T | *** | ** | ns | * | *** | ns |
C | *** | *** | *** | *** | *** | *** |
Y | ns | *** | *** | * | *** | ns |
T × C | ** | ns | ns | *** | ns | ns |
T × Y | ns | ns | ns | ns | ** | ns |
C × Y | *** | *** | *** | ns | *** | *** |
T × C × Y | ns | ns | ns | * | * | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Różewicz, M.; Grabiński, J.; Wyzińska, M. Growth Parameters, Yield and Grain Quality of Different Winter Wheat Cultivars Using Strip Tillage in Relation to the Intensity of Post-Harvest Soil Cultivation. Agriculture 2024, 14, 2345. https://doi.org/10.3390/agriculture14122345
Różewicz M, Grabiński J, Wyzińska M. Growth Parameters, Yield and Grain Quality of Different Winter Wheat Cultivars Using Strip Tillage in Relation to the Intensity of Post-Harvest Soil Cultivation. Agriculture. 2024; 14(12):2345. https://doi.org/10.3390/agriculture14122345
Chicago/Turabian StyleRóżewicz, Marcin, Jerzy Grabiński, and Marta Wyzińska. 2024. "Growth Parameters, Yield and Grain Quality of Different Winter Wheat Cultivars Using Strip Tillage in Relation to the Intensity of Post-Harvest Soil Cultivation" Agriculture 14, no. 12: 2345. https://doi.org/10.3390/agriculture14122345
APA StyleRóżewicz, M., Grabiński, J., & Wyzińska, M. (2024). Growth Parameters, Yield and Grain Quality of Different Winter Wheat Cultivars Using Strip Tillage in Relation to the Intensity of Post-Harvest Soil Cultivation. Agriculture, 14(12), 2345. https://doi.org/10.3390/agriculture14122345