The Border Effects of Dry Matter, Photosynthetic Characteristics, and Yield Components of Wheat under Hole Sowing Condition
<p>Total precipitation and monthly mean temperature during wheat growth stage from October 2021 to June 2022.</p> "> Figure 2
<p>Hole sowing planting map of one plot (<b>A</b>), hole sowing wheat growth map (<b>B</b>), and the border effect map of wheat (<b>C</b>).</p> "> Figure 2 Cont.
<p>Hole sowing planting map of one plot (<b>A</b>), hole sowing wheat growth map (<b>B</b>), and the border effect map of wheat (<b>C</b>).</p> "> Figure 3
<p>Border effect of aboveground dry matter of wheat in different stages. (*: <span class="html-italic">p</span> ≤ 0.05, **: <span class="html-italic">p</span> ≤ 0.01, and NS: non-significant (ANOVA)).</p> "> Figure 3 Cont.
<p>Border effect of aboveground dry matter of wheat in different stages. (*: <span class="html-italic">p</span> ≤ 0.05, **: <span class="html-italic">p</span> ≤ 0.01, and NS: non-significant (ANOVA)).</p> "> Figure 4
<p>Border effect of net photosynthetic rate of wheat in different stages. (*: <span class="html-italic">p</span> ≤ 0.05, **: <span class="html-italic">p</span> ≤ 0.01, and NS: non-significant (ANOVA)).</p> "> Figure 4 Cont.
<p>Border effect of net photosynthetic rate of wheat in different stages. (*: <span class="html-italic">p</span> ≤ 0.05, **: <span class="html-italic">p</span> ≤ 0.01, and NS: non-significant (ANOVA)).</p> "> Figure 5
<p>Border effects of stomatal conductance of wheat in different stages. (*: <span class="html-italic">p</span> ≤ 0.05, **: <span class="html-italic">p</span> ≤ 0.01, and NS: non-significant (ANOVA)).</p> "> Figure 5 Cont.
<p>Border effects of stomatal conductance of wheat in different stages. (*: <span class="html-italic">p</span> ≤ 0.05, **: <span class="html-italic">p</span> ≤ 0.01, and NS: non-significant (ANOVA)).</p> "> Figure 6
<p>Border effects of intercellular carbon dioxide concentration of wheat in different stages. (*: <span class="html-italic">p</span> ≤ 0.05, **: <span class="html-italic">p</span> ≤ 0.01, ***: <span class="html-italic">p</span> ≤ 0.001, and NS: non-significant (ANOVA)).</p> "> Figure 7
<p>Correlation analysis of different wheat indexes (X axis and Y axis represent different indexes, r values in the Figure in different colors, *: <span class="html-italic">p</span> ≤ 0.05, **: <span class="html-italic">p</span> ≤ 0.01).</p> "> Figure 8
<p>Response of different indexes of wheat cultivars, XN175 and XN765, to border effect (Multi-class area under the curve: 0.9722).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Designs and Determination Methods
2.2. Statistical Analysis of Data
3. Results
3.1. Border Effects of Yield Components
3.2. Border Effects of Dry Matter
3.3. Border Effects of Photosynthetic Characteristics
3.3.1. Border Effects of Net Photosynthetic Rate
3.3.2. Border Effects of Stomatal Conductance
3.3.3. Border Effects of Intercellular Carbon Dioxide Concentration
3.4. Correlation Analysis of Different Indexes of Wheat
3.5. The Contribution of Different Indicators to Its Significant Border Effects
3.6. Difference Analysis of Each Index between Different Wheat Varieties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, F.; Wu, X.; Zhang, H.; Chen, Y.; Wang, W. Making better maize plants for sustainable grain production in a changing climate. Front. Plant Sci. 2015, 6, 835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shewry, P.R.; Hey, S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J. Cereal Sci. 2015, 65, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Singh, K. Agronomic zinc biofortification of wheat. Agrochimica 2019, 63, 307–317. [Google Scholar] [CrossRef]
- Mohammed, A.A.B.A.; Omran, A.A.B.; Hasan, Z.; Ilyas, R.A.; Sapuan, S.M. Wheat Biocomposite Extraction, Structure, Properties and Characterization: A Review. Polymers 2021, 13, 3624. [Google Scholar] [CrossRef]
- Xu, H.; Twine, T.E.; Girvetz, E. Climate Change and Maize Yield in Iowa. PLoS ONE 2016, 11, e0156083. [Google Scholar] [CrossRef] [Green Version]
- Hegsted, D.M.; Trulson, M.F.; Stare, F.J. Role of Wheat and Wheat Products in Human Nutrition. Physiol. Rev. 1954, 34, 221–258. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, A.A. Wheat Landraces: A mini review. Emir. J. Food Agric. 2013, 25, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yang, J.; Li, Y.; Ma, L. Current strategies and advances in wheat biology. Crop J. 2020, 8, 879–891. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, J.; Liu, Q.; Liu, H.; Zhou, Y.; Yang, W.; Ma, W. Improvement and Re-Evolution of Tetraploid Wheat for Global Environmental Challenge and Diversity Consumption Demand. Int. J. Mol. Sci. 2022, 23, 2206. [Google Scholar] [CrossRef]
- Leegood, R.C.; Evans, J.R.; Furbank, R.T. Food security requires genetic advances to increase farm yields. Nature 2010, 464, 831. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Xu, Y.; Jia, Q.; Ahmad, I.; Wei, T.; Ren, X.; Zhang, P.; Din, R.; Cai, T.; Jia, Z. Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions. Agric. Water Manag. 2018, 201, 207–218. [Google Scholar] [CrossRef]
- Martínez-Moreno, F.; Ammar, K.; Solís, I. Global Changes in Cultivated Area and Breeding Activities of Durum Wheat from 1800 to Date: A Historical Review. Agronomy 2022, 12, 1135. [Google Scholar] [CrossRef]
- Hu, X.; Ma, J.; Qian, W.; Cao, Y.; Zhang, Y.; Liu, B.; Tang, L.; Cao, W.; Zhu, Y.; Liu, L. Effects of Low Temperature on the Amino Acid Composition of Wheat Grains. Agronomy 2022, 12, 1171. [Google Scholar] [CrossRef]
- de Souza Gonçalves, P.A.; Sousa e Silva, C.R. Efeito de espécies vegetais em bordadura em cebola sobre a densidade populacional de tripes e sirfídeos predadores. Hortic. Bras. 2003, 21, 731–733. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Wang, Y.-C.; Xu, W.-B.; Yang, D.-S.; Yang, G.-D.; Yang, C.; Huang, J.-L.; Peng, S.-B. Border effects of the main and ratoon crops in the rice ratooning system. J. Integr. Agric. 2023, 22, 80–91. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, G.; Hou, P.; Liu, Y.; Li, J.; Ming, B.; Xie, R.; Wang, K.; Li, S. Weak border effects and great uniformity increase yield of maize (Zea mays) under dense population. Crop Pasture Sci. 2020, 71, 653–659. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, H.; Wang, B.; Jian, Z.; Wang, F.; Huang, J.; Nie, L.; Cui, K.; Peng, S. Quantification of border effect on grain yield measurement of hybrid rice. Field Crop Res. 2013, 141, 47–54. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Z.; Li, J.; Zhang, M.; Zhou, S.; Wang, Z.; Zhang, Y. Does maize hybrid intercropping increase yield due to border effects? Field Crop Res. 2017, 214, 283–290. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, W.; Zhang, X.; Li, L.; Kang, G.; Feng, W.; Zhu, Y.; Wang, C.; Guo, T. Effects of cultivation patterns on winter wheat root growth parameters and grain yield. Field Crop Res. 2014, 156, 208–218. [Google Scholar] [CrossRef]
- Ahmed, O. Assessing the Current Situation of the World Wheat Market Leadership: Using the Semi-Parametric Approach. Mathematics 2021, 9, 115. [Google Scholar] [CrossRef]
- Hu, Q.; Jiang, W.-Q.; Qiu, S.; Xing, Z.-P.; Hu, Y.-J.; Guo, B.-W.; Liu, G.-D.; Gao, H.; Zhang, H.-C.; Wei, H.-Y. Effect of wide-narrow row arrangement in mechanical pot-seedling transplanting and plant density on yield formation and grain quality of japonica rice. J. Integr. Agric. 2020, 19, 1197–1214. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, C.; Chen, G.; Hu, R.; Ji, Y.; Xu, Y.; Wu, W. Border Effect on Ratoon Crop Yield in a Mechanized Rice Ratooning System. Agronomy 2022, 12, 262. [Google Scholar] [CrossRef]
- Cappelli, A.; Cini, E. Challenges and Opportunities in Wheat Flour, Pasta, Bread, and Bakery Product Production Chains: A Systematic Review of Innovations and Improvement Strategies to Increase Sustainability, Productivity, and Product Quality. Sustainability 2021, 13, 2608. [Google Scholar] [CrossRef]
- Oda, S. Recent Improvement of Japanese Wheat. J. Jpn. Soc. Food Sci. Technol. 2017, 64, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Sarker, M.; Itohara, Y.; Hoque, M.; Uddin, S.N. Scope and challenges of organic wheat cultivation in Bangladesh. Aust. J. Crop Sci. 2011, 5, 1114–1119. [Google Scholar]
- Wu, B.; Dong, Y.; Hai, J. Effect of Hole Seeding Way on Yield and Quality of Winter Wheat. Acta Agric. Boreali-Occident. Sin. 2019, 28, 906–913. (In Chinese) [Google Scholar]
- Qi, H.; Dong, Y.; Li, C.; Angelique Twizerimana Ren, H.; Hai, J. Effects of Sowing Methods and Seeding Rates on Yield and Quality of Winter Wheat Variety ‘Xinong 20’. Acta Agric. Boreali-Occident. Sin. 2021, 30, 32–40. (In Chinese) [Google Scholar]
Variety | Location | Thousand-Grain Weight (g) | Grain Per Spike | Effective Spikes Per Hole | Effective Spikes (×104·ha−1) | Yield (kg·ha−1) | Thousand-Grain Weight (BE%) | Grain Per Spike (BE%) |
---|---|---|---|---|---|---|---|---|
XN136 | outer | 56.41 ab | 65.67 b | 18 a | 506.7 c | 8358.3 ab | 6.8% | 5.9% |
inner | 52.83 d | 62 b | ||||||
XN175 | outer | 57.66 a | 75 a | 23 a | 643 a | 8587.1 a | 15.1% | 14.2% |
inner | 50.1 e | 65.67 b | ||||||
XN527 | outer | 53.83 b | 53 c | 22 a | 604 ab | 7474.9 b | −2.8% | 1.3% |
inner | 55.39 abcd | 52.33 c | ||||||
XN536 | outer | 55.57 abc | 42 e | 19 a | 539 c | 8085.3 ab | 3.1% | 3.3% |
inner | 53.9 b | 40.67 e | ||||||
XN765 | outer | 53.22 cd | 56 c | 20 a | 570 bc | 8558.6 a | 11.5% | 12% |
inner | 47.71 e | 50 d |
Variety | Dry Matter Per Plant (g) | Net Photosynthetic Rate (μ mol CO2·m−2·s−1) | Stomatal Conductance (mol·m−2·s−1) | Intercellular Carbon Dioxide Concentration (μ mol CO2·mol−1) | Yield (kg·ha−1) |
---|---|---|---|---|---|
XN136 | 8.42 a | 8.64 c | 0.17 c | 337.18 a | 8358.3 ab |
XN175 | 8.92 a | 12.87 a | 0.36 ab | 336.4 a | 8587.1 a |
XN527 | 6.15 bc | 9.65 bc | 0.26 bc | 344.22 a | 7474.9 b |
XN536 | 4.90 c | 10.4 bc | 0.29 ab | 349.9 a | 8085.3 ab |
XN765 | 6.63 b | 11.51 ab | 0.37 a | 342.88 a | 8558.6 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Yang, C.; Liang, H.; Yang, Y.; Bu, K.; Dong, Y.; Hai, J. The Border Effects of Dry Matter, Photosynthetic Characteristics, and Yield Components of Wheat under Hole Sowing Condition. Agronomy 2023, 13, 766. https://doi.org/10.3390/agronomy13030766
Sun Y, Yang C, Liang H, Yang Y, Bu K, Dong Y, Hai J. The Border Effects of Dry Matter, Photosynthetic Characteristics, and Yield Components of Wheat under Hole Sowing Condition. Agronomy. 2023; 13(3):766. https://doi.org/10.3390/agronomy13030766
Chicago/Turabian StyleSun, Yitao, Chao Yang, Huajun Liang, Yuyan Yang, Kangmin Bu, Yongli Dong, and Jiangbo Hai. 2023. "The Border Effects of Dry Matter, Photosynthetic Characteristics, and Yield Components of Wheat under Hole Sowing Condition" Agronomy 13, no. 3: 766. https://doi.org/10.3390/agronomy13030766
APA StyleSun, Y., Yang, C., Liang, H., Yang, Y., Bu, K., Dong, Y., & Hai, J. (2023). The Border Effects of Dry Matter, Photosynthetic Characteristics, and Yield Components of Wheat under Hole Sowing Condition. Agronomy, 13(3), 766. https://doi.org/10.3390/agronomy13030766