Review of Magnetoelectric Sensors
<p>(<b>a</b>) Schematic structure (top) and photograph (bottom) of ME laminate composites using Terfenol-D and PZT disks [<a href="#B27-actuators-10-00109" class="html-bibr">27</a>]. (<b>b</b>) 3D and crosss ectional schematic illustration of the single period of 1-3-type ME structure [<a href="#B37-actuators-10-00109" class="html-bibr">37</a>]. (<b>c</b>) Illustration of the FeBSiC/piezofiber laminate configuration working on multi-push-pull mode [<a href="#B29-actuators-10-00109" class="html-bibr">29</a>,<a href="#B30-actuators-10-00109" class="html-bibr">30</a>]. (<b>d</b>) The schematic view for 1-1 laminated ME composite and a-(ii) the prototype snapshot of the 1-1 typed ME sample [<a href="#B8-actuators-10-00109" class="html-bibr">8</a>].</p> "> Figure 2
<p>Sketch of ME MEMS cantilever with the functional layer deposited on one side (<b>a</b>) [<a href="#B47-actuators-10-00109" class="html-bibr">47</a>] and two side (<b>b</b>) [<a href="#B50-actuators-10-00109" class="html-bibr">50</a>] of silicon substrate. (<b>c</b>) Scanning electron microscopy (SEM) images of the ME nano plate resonator. (<b>d</b>) Scanning electron microscopy (SEM) images of the fabricated ME thin-film bulk acoustic wave resonators. The red and blue areas show the suspended circular plate and AlN anchors. The yellow area presents the electrode [<a href="#B53-actuators-10-00109" class="html-bibr">53</a>].</p> "> Figure 3
<p>(<b>a</b>) Schematic diagram and the protype photo of 2-1 type ME composite working on multi-push-pull mode. (<b>b</b>) Measured and estimated equivalent magnetic noise of the proposed sensor unit [<a href="#B33-actuators-10-00109" class="html-bibr">33</a>].</p> "> Figure 4
<p>3D structure of Metglas/Mn-PMNT ME composite (<b>a</b>) and its cross-sectional diagram (<b>b</b>); (<b>c</b>) The EMN over the frequency range of 8 Hz < <span class="html-italic">f</span> < 100 Hz. (<b>d</b>)The EMN and <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> </mrow> </semantics></math> of different Metglas/Mn-PMNT sensors at 30 Hz [<a href="#B55-actuators-10-00109" class="html-bibr">55</a>].</p> "> Figure 5
<p>(<b>a</b>) The demonstration of fundamental modulation and frequency mixing phenomenon in ME sensors; (<b>b</b>) A block diagram of the amplitude demodulation method with respect to amplitude modulation signal S<sub>Mod</sub> (t). (<b>c</b>) The measured output waveform in response to an applied weak AC magnetic field at 100 mHz. (<b>d</b>) A linear-response to varying H<sub>AC</sub> at 100 mHz with a step of 0.1 nT [<a href="#B61-actuators-10-00109" class="html-bibr">61</a>].</p> "> Figure 6
<p>(<b>a</b>) Magnetic field detection limit measurements at frequencies of <span class="html-italic">f</span> = 1 Hz and <span class="html-italic">f</span> = 77.5 kHz (resonance condition), respectively [<a href="#B29-actuators-10-00109" class="html-bibr">29</a>]; (<b>b</b>)The measurement of LOD for MEMS ME sensor [<a href="#B47-actuators-10-00109" class="html-bibr">47</a>], (<b>c</b>) for 1-1 typed ME sensor [<a href="#B8-actuators-10-00109" class="html-bibr">8</a>] and (<b>d</b>) for a 2-2 ME bimorph [<a href="#B48-actuators-10-00109" class="html-bibr">48</a>].</p> "> Figure 7
<p>The measurement of LoD for Metglas/PMN–PT ME laminate at (<b>a</b>) <span class="html-italic">f</span> = 10 kHz and (<b>b</b>) resonance frequency of 27.778 kHz [<a href="#B31-actuators-10-00109" class="html-bibr">31</a>]. (<b>c</b>) Schematic representation and (<b>d</b>) the measurement of LoD for NMES AlN/(FeGaB/Al<sub>2</sub>O<sub>3</sub>) multilayered heterostructure [<a href="#B51-actuators-10-00109" class="html-bibr">51</a>]; (<b>e</b>) Schematic representation of the conventional flux gate senor and the proposed ME flux gate sensor [<a href="#B64-actuators-10-00109" class="html-bibr">64</a>]; (<b>f</b>) The measured results for DC magnetic field resolution [<a href="#B64-actuators-10-00109" class="html-bibr">64</a>].</p> "> Figure 8
<p>(<b>a</b>) Photograph of the vehicle detection system setup; (<b>b</b>) sensor output signals in terms of the X (blue curve), Y (red curve) and Z (green curve) component in the ME sensor (top), PE sensor (middle) and fluxgate sensor (bottom) [<a href="#B69-actuators-10-00109" class="html-bibr">69</a>].</p> "> Figure 9
<p>(<b>a</b>) Prototype of the measurement setup using 1-D ME sensor array and imaging system. (<b>b</b>) the positioning result of an Fe-ball [<a href="#B72-actuators-10-00109" class="html-bibr">72</a>].</p> "> Figure 10
<p>(<b>a</b>)Output voltage from the magnetoelectric sensor when it is rotated in the Earth’s plane [<a href="#B73-actuators-10-00109" class="html-bibr">73</a>]. (<b>b</b>) Photograph of the experimental rotation system and (<b>c</b>) the accuracy measurement of spatial angles [<a href="#B74-actuators-10-00109" class="html-bibr">74</a>].</p> "> Figure 11
<p>(<b>a</b>) The structure of the HFMEC. (<b>b</b>) ME coupling response of the HFMEC as a function of the DC magnetic-field, the signal exhibits a “V” shape and the knee point of the curve reveals the geomagnetic field [<a href="#B75-actuators-10-00109" class="html-bibr">75</a>].</p> "> Figure 12
<p>(<b>a</b>) Schematic and photograph of the current-sensing device; (<b>b</b>) Comparison of the sensitivities measured at low frequency and resonant frequency [<a href="#B78-actuators-10-00109" class="html-bibr">78</a>]. (<b>c</b>) Measured ME voltage response with respect to an aluminum pipe with a 10 mm crack in the center (the inset highlighted by dashed line showed the structure of the ME ECT probe). (<b>d</b>) Crack identifying results for one-dimensionally distributed cracks labelled 1# and 2# for an aluminum pipeline and steel pipeline, respectively [<a href="#B80-actuators-10-00109" class="html-bibr">80</a>].</p> "> Figure 13
<p>(<b>a</b>) Schematic view of the packaged sensor; (<b>b</b>) The peak-to-peak values under different rotational speed; (<b>c</b>) The frequency of the output signal as a function of the rotational speed [<a href="#B81-actuators-10-00109" class="html-bibr">81</a>]. (<b>d</b>) Schematic layout of the gear, permanent magnet and FeCoSiB/Pb(Zr,Ti)O<sub>3</sub> sensor; (<b>e</b>) The magnetic flux density with the gear rotates one circle (<b>f</b>) the measurement speed (G<sub>s</sub>) under different rotational speed [<a href="#B82-actuators-10-00109" class="html-bibr">82</a>].</p> "> Figure 14
<p>(<b>a</b>)Structure of the EME sensor; (<b>b</b>) Stress response of EME sensors [<a href="#B85-actuators-10-00109" class="html-bibr">85</a>].</p> "> Figure 15
<p>(<b>a</b>) the schematic of the EPR cavity and FMR measurement setup; (<b>b</b>) the negative correlation between H<sub>r</sub> and ε of the NiCo film with a static strain range of 0 με–700 με by linear fitting [<a href="#B86-actuators-10-00109" class="html-bibr">86</a>].</p> "> Figure 16
<p>Amplitude densities of magnetic signals generated by various sources of the human body [<a href="#B90-actuators-10-00109" class="html-bibr">90</a>].</p> "> Figure 17
<p>(<b>a</b>) Setup for measuring distributions of SPIONs. (<b>b</b>) Maximum magnetic field amplitude for different iron content measurements. (<b>c</b>) Place the sample in different grooves (top), the measured field distributions of the two sample, and the red line in the field distribution shows the location of the grooves (middle), the particle distribution reconstructed from these measurements (bottom) [<a href="#B92-actuators-10-00109" class="html-bibr">92</a>]. (<b>d</b>) Measurement setup of cardiological magnetic detection. (<b>e</b>) Averaged result of the R-wave measurement [<a href="#B95-actuators-10-00109" class="html-bibr">95</a>].</p> ">
Abstract
:1. Introduction
2. Materials for ME Sensors
2.1. Bulk ME Laminates
2.2. MEMS and NEMS ME Laminates
3. Advances in ME Sensors
3.1. Low-Frequency Magnetic Sensor
3.2. Resonant-Frequency Magnetic Sensor
3.3. DC Magnetic Sensor
4. Engineering Applications of ME Sensors
4.1. Magnetic Target Detection and Localization
4.2. Geomagnetic Field Sensing
4.3. Current Sensing and Non-Destructive Detection
4.4. Velocity and Displacement Sensing
4.5. Stress and Strain Measurement
4.6. Biomagnetic Measurement
5. Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, J.; Hu, J.; Li, Z.; Nan, C.W. Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 2011, 23, 1062–1087. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-M.; Nan, T.; Sun, N.X.; Chen, L.-Q. Multiferroic magnetoelectric nanostructures for novel device applications. MRS Bull. 2015, 40, 728–735. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.-M.; Duan, C.-G.; Nan, C.-W.; Chen, L.-Q. Understanding and designing magnetoelectric heterostructures guided by computation: Progresses, remaining questions, and perspectives. NPJ Comput. Mater. 2017, 3, 1–21. [Google Scholar] [CrossRef]
- Kleemann, W. Multiferroic and magnetoelectric nanocomposites for data processing. J. Phys. D Appl. Phys. 2017, 50, 223001. [Google Scholar] [CrossRef]
- Lawes, G.; Srinivasan, G. Introduction to magnetoelectric coupling and multiferroic films. J. Phys. D Appl. Phys. 2011, 44, 243001. [Google Scholar] [CrossRef]
- Palneedi, H.; Annapureddy, V.; Priya, S.; Ryu, J. Status and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications. Actuators 2016, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Chu, Z.; PourhosseiniAsl, M.; Dong, S. Review of multi-layered magnetoelectric composite materials and devices applications. J. Phys. D Appl. Phys. 2018, 51, 243001. [Google Scholar] [CrossRef]
- Chu, Z.; Shi, H.; Shi, W.; Liu, G.; Wu, J.; Yalng, J.; Dong, S. Enhanced Resonance Magnetoelectric Coupling in (1-1) Connectivity Composites. Adv. Mater. 2017, 29, 1606022. [Google Scholar] [CrossRef]
- PourhosseiniAsl, M.; Gao, X.; Kamalisiahroudi, S.; Yu, Z.; Chu, Z.; Yang, J.; Lee, H.-Y.; Dong, S. Versatile power and energy conversion of magnetoelectric composite materials with high efficiency via electromechanical resonance. Nano Energy 2020, 70, 104506. [Google Scholar] [CrossRef]
- Nan, C.-W.; Bichurin, M.I.; Dong, S.; Viehland, D.; Srinivasan, G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 2008, 103, 031101. [Google Scholar] [CrossRef]
- Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 2005, 38, R123–R152. [Google Scholar] [CrossRef]
- Zhai, J.; Xing, Z.; Dong, S.; Li, J.; Viehland, D. Magnetoelectric Laminate Composites: An Overview. J. Am. Ceram. Soc. 2008, 91, 351–358. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Viehland, D. Magnetoelectrics for magnetic sensor applications: Status, challenges and perspectives. Mater. Today 2014, 17, 269–275. [Google Scholar] [CrossRef]
- Gutierrez, J.; Lasheras, A.; Martins, P.; Pereira, N.; Barandiaran, J.M.; Lanceros-Mendez, S. Metallic Glass/PVDF Magnetoelectric Laminates for Resonant Sensors and Actuators: A Review. Sensors 2017, 17, 1251. [Google Scholar] [CrossRef]
- Sreenivasulu, G.; Qu, P.; Petrov, V.; Qu, H.; Srinivasan, G. Sensitivity Enhancement in Magnetic Sensors Based on Ferroelectric-Bimorphs and Multiferroic Composites. Sensors 2016, 16, 262. [Google Scholar] [CrossRef] [Green Version]
- Annapureddy, V.; Palneedi, H.; Hwang, G.-T.; Peddigari, M.; Jeong, D.-Y.; Yoon, W.-H.; Kim, K.-H. Magnetic energy harvesting with magnetoelectrics: An emerging technology for self-powered autonomous systems. Sustain. Energy Fuels 2017, 1, 2039–2052. [Google Scholar] [CrossRef]
- Vopson, M.M. Fundamentals of Multiferroic Materials and Their Possible Applications. Crit. Rev. Solid State Mater. Sci. 2015, 40, 223–250. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Yan, Y.; Carazo, A.V.; Dong, S.; Priya, S. Low-temperature cofired unipoled multilayer piezoelectric transformers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 65, 513–519. [Google Scholar] [CrossRef]
- Yang, N.; Wu, H.; Wang, S.; Yuan, G.; Zhang, J.; Sokolov, O.; Bichurin, M.I.; Wang, K.; Wang, Y. Ultrasensitive flexible magnetoelectric sensor. APL Mater. 2021, 9, 021123. [Google Scholar] [CrossRef]
- Dong, S.; Liu, J.-M.; Cheong, S.-W.; Ren, Z. Multiferroic materials and magnetoelectric physics: Symmetry, entanglement, excitation, and topology. Adv. Phys. 2015, 64, 519–626. [Google Scholar] [CrossRef] [Green Version]
- Astrov, D.N. Magnetoelectric Effect In Chromium Oxide. Sov. Phys. Jetp 1961, 13, 729–733. [Google Scholar]
- Schmid, H. Multi-ferroic magnetoelectrics. Ferroelectrics 1994, 162, 317–338. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009, 21, 463–2485. [Google Scholar] [CrossRef]
- Yamauchi, K.; Picozzi, S. Orbital degrees of freedom as origin of magnetoelectric coupling in magnetite. Phys. Rev. B 2012, 85, 085131. [Google Scholar] [CrossRef] [Green Version]
- Pantinakis, A.; Jackson, D.A. High-sensitivity low-frequency magnetometer using magnetostrictive primary sensing and piezoelectric signal recovery. Electron. Lett. 1986, 22, 737–738. [Google Scholar] [CrossRef]
- Li, M.; Matyushov, A.; Dong, C.; Chen, H.; Lin, H.; Nan, T.; Qian, Z.; Rinaldi, M.; Lin, Y.; Sun, N.X. Ultra-sensitive NEMS magnetoelectric sensor for picotesla DC magnetic field detection. Appl. Phys. Lett. 2017, 110, 143510. [Google Scholar] [CrossRef]
- Ryu, J.; Priya, S.; Uchino, K.; Kim, H.-E. Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials. J. Electroceramics 2002, 8, 107–119. [Google Scholar] [CrossRef]
- Dong, S.; Li, J.-F.; Viehland, D. Ultrahigh magnetic field sensitivity in laminates of TERFENOL-D and Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals. Appl. Phys. Lett. 2003, 83, 2265–2267. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Zhai, J.; Bai, F.; Li, J.-F.; Viehland, D. Push-pull mode magnetostrictive/piezoelectric laminate composite with an enhanced magnetoelectric voltage coefficient. Appl. Phys. Lett. 2005, 87, 062502. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Zhai, J.; Li, J.; Viehland, D. Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity. Appl. Phys. Lett. 2006, 89, 252904. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Shen, L.; Wang, Y.; Gray, D.; Li, J.; Viehland, D. Enhanced sensitivity to direct current magnetic field changes in Metglas/Pb(Mg1/3Nb2/3)O3–PbTiO3 laminates. J. Appl. Phys. 2011, 109, 074507. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Gao, J.; Wang, Y.; Gray, D.; Li, J.; Viehland, D. Enhancement in magnetic field sensitivity and reduction in equivalent magnetic noise by magnetoelectric laminate stacks. J. Appl. Phys. 2012, 111, 104504. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gray, D.; Betrry, D.; Gao, J.; Li, M.; Li, J.; Viehland, D. An extremely low equivalent magnetic noise magnetoelectric sensor. Adv. Mater. 2011, 23, 4111–4114. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Berry, D.; Das, J.; Gray, D.; Li, J.; Viehland, D. Enhanced Sensitivity and Reduced Noise Floor in Magnetoelectric Laminate Sensors by an Improved Lamination Process. J. Am. Ceram. Soc. 2011, 94, 3738–3741. [Google Scholar] [CrossRef]
- Gao, J.; Das, J.; Xing, Z.; Li, J.; Viehland, D. Comparison of noise floor and sensitivity for different magnetoelectric laminates. J. Appl. Phys. 2010, 108, 084509. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Nan, C.W.; Zhang, J.; Cai, N.; Li, J.-F. Magnetoelectric effect of Pb(Zr,Ti)O3 rod arrays in a (Tb,Dy)Fe2/epoxy medium. Appl. Phys. Lett. 2005, 87, 012503. [Google Scholar] [CrossRef]
- Ma, J.; Shi, Z.; Nan, C.W. Magnetoelectric Properties of Composites of Single Pb(Zr,Ti)O3 Rods and Terfenol-D/Epoxy with a Single-Period of 1-3-Type Structure. Adv. Mater. 2007, 19, 2571–2573. [Google Scholar] [CrossRef]
- Palneedi, H.; Choi, S.-Y.; Kim, G.; Annapureddy, V.; Maurya, D.; Priya, S.; Lee, K.J.; Chung, S.; Kang, S.L.; Ryu, J. Tailoring the Magnetoelectric Properties of Pb(Zr,Ti)O3 Film Deposited on Amorphous Metglas Foil by Laser Annealing. J. Am. Ceram. Soc. 2016, 99, 2680–2687. [Google Scholar] [CrossRef]
- Palneedi, H.; Maurya, D.; Kim, G.-Y.; Priya, S.; Kang, S.-J.L.; Kim, K.-H.; Choi, S.-Y.; Ryu, J. Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on magnetostrictive amorphous metal substrate. Appl. Phys. Lett. 2015, 107, 012904. [Google Scholar] [CrossRef]
- Palneedi, H.; Yeo, H.G.; Hwang, G.-T.; Annapureddy, V.; Kim, J.-W.; Choi, J.-J.; Trolier-McKinstry, S.; Ryu, J. A flexible, high-performance magnetoelectric heterostructure of (001) oriented Pb(Zr0.52Ti0.48)O3 film grown on Ni foil. Appl. Mater. 2017, 5, 096111. [Google Scholar] [CrossRef] [Green Version]
- Palneedi, H.; Maurya, D.; Kim, G.-Y.; Annapureddy, V.; Noh, M.-S.; Kang, C.-Y.; Kim, J.-W.; Choi, J.-J.; Choi, S.-Y.; Chung, S.-Y.; et al. Unleashing the Full Potential of Magnetoelectric Coupling in Film Heterostructures. Adv. Mater. 2017, 29, 1605688. [Google Scholar] [CrossRef]
- Srinivasan, G.; Rasmussen, E.T.; Gallegos, J.; Srinivasan, R.; Bokhan, Y.I.; Laletin, V.M. Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 2001, 64, 214408. [Google Scholar] [CrossRef]
- Zhai, J.; Dong, S.; Xing, Z.; Li, J.; Viehland, D. Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates. Appl. Phys. Lett. 2006, 89, 083507. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Lu, S.-G.; Chanthad, C.; Zhang, Q.; Haque, M.A.; Wang, Q. Multiferroic Polymer Composites with Greatly Enhanced Magnetoelectric Effect under a Low Magnetic Bias. Adv. Mater. 2011, 23, 3853. [Google Scholar] [CrossRef]
- Sreenivasulu, G.; Fetisov, L.Y.; Fetisov, Y.K.; Srinivasan, G. Piezoelectric single crystal langatate and ferromagnetic composites: Studies on low-frequency and resonance magnetoelectric effects. Appl. Phys. Lett. 2012, 100, 052901. [Google Scholar] [CrossRef]
- Kirchhof, C.; Krantz, M.; Teliban, I.; Jahns, R.; Marauska, S.; Wagner, B.; Knoöchel, R.; Gerken, M.; Meyners, D.; Quandt, E. Giant magnetoelectric effect in vacuum. Appl. Phys. Lett. 2013, 102, 232905. [Google Scholar] [CrossRef]
- Yarar, E.; Salzer, S.; Hrkac, V.; Piorra, A.; Höft, M.; Knöchel, R.; Kienle, L.; Quandt, E. Inverse bilayer magnetoelectric thin film sensor. Appl. Phys. Lett. 2016, 109, 022901. [Google Scholar] [CrossRef]
- Turutin, A.V.; Vidal, J.V.; Kubasov, I.V.; Kislyuk, A.M.; Malinkovich, M.D.; Parkhomenko, Y.N.; Kobeleva, S.P.; Pakhomov, O.V.; Kholkin, A.L.; Sobolev, N.A. Magnetoelectric metglas/bidomain y + 140°-cut lithium niobate composite for sensing fT magnetic fields. Appl. Phys. Lett. 2018, 112, 262906. [Google Scholar] [CrossRef]
- Greve, H.; Woltermann, E.; Quenzer, H.-J.; Wagner, B.; Quandt, E. Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl. Phys. Lett. 2010, 96, 182501. [Google Scholar] [CrossRef]
- Jovičević Klug, M.; Thormählen, L.; Röbisch, V.; Toxværd, S.D.; Höft, M.; Knöchel, R.; Quandt, E.; Meyners, D.; McCord, J. Antiparallel exchange biased multilayers for low magnetic noise magnetic field sensors. Appl. Phys. Lett. 2019, 114, 192410. [Google Scholar] [CrossRef]
- Nan, T.; Hui, Y.; Rinaldi, M.; Sun, N.X. Self-biased 215 MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection. Sci. Rep. 2013, 3, 1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, C.; Chu, Z.-Q.; Spetzler, B.; Hayes, P.; Dong, C.-Z.; Liang, X.-F.; Chen, H.-H.; He, Y.-F.; Wei, Y.-Y.; Lisenkov, I.; et al. Mechanical-Resonance-Enhanced Thin-Film Magnetoelectric Heterostructures for Magnetometers, Mechanical Antennas, Tunable RF Inductors, and Filters. Materials 2019, 12, 2259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nan, T.; Lin, H.; Gao, Y.; Matyushov, A.; Yu, G.; Chen, H.; Sun, N.; Wei, S.; Wang, Z.; Li, M.; et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat. Commun 2017, 8, 296. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Shi, H.; Gao, X.; Wu, J.; Dong, S. Magnetoelectric coupling of a magnetoelectric flux gate sensor in vibration noise circumstance. AIP Adv. 2018, 8, 015203. [Google Scholar] [CrossRef]
- Fang, C.; Jiao, J.; Ma, J.; Lin, D.; Xu, H.; Zhao, X.; Luo, H. Significant reduction of equivalent magnetic noise by in-plane series connection in magnetoelectric Metglas/Mn-doped Pb(Mg1/3Nb2/3)O3-PbTiO3laminate composites. J. Phys. D Appl. Phys. 2015, 48, 465002. [Google Scholar] [CrossRef]
- Liu, Y.; Jiao, J.; Ma, J.; Ren, B.; Li, L.; Zhao, X.; Luo, H.; Shi, L. Frequency conversion in magnetoelectric composites for quasi-static magnetic field detection. Appl. Phys. Lett. 2013, 103, 212902. [Google Scholar] [CrossRef]
- Petrie, J.R.; Fine, J.; Mandal, S.; Sreenivasulu, G.; Srinivasan, G.; Edelstein, A.S. Enhanced sensitivity of magnetoelectric sensors by tuning the resonant frequency. Appl. Phys. Lett. 2011, 99, 043504. [Google Scholar] [CrossRef] [Green Version]
- Petrie, J.; Mandal, S.; Gollapudi, S.; Viehland, D.; Gray, D.; Srinivasan, G.; Edelstein, A.S. Enhancing the sensitivity of magnetoelectric sensors by increasing the operating frequency. J. Appl. Phys. 2011, 110, 124506. [Google Scholar] [CrossRef] [Green Version]
- Ou-Yang, J.; Liu, X.; Zhou, H.; Zou, Z.; Yang, Y.; Li, J.; Zhang, Y.; Zhu, B.; Chetn, S.; Yang, X. Magnetoelectric laminate composites: An overview of methods for improving the DC and low-frequency response. J. Phys. D Appl. Phys. 2018, 51, 324005. [Google Scholar] [CrossRef]
- Chu, Z.; Dong, C.; Tu, C.; Liang, X.; Chen, H.; Sun, C.; Yu, Z.; Dong, S.; Sun, N.-X. A low-power and high-sensitivity magnetic field sensor based on converse magnetoelectric effect. Appl. Phys. Lett. 2019, 115, 162901. [Google Scholar] [CrossRef]
- Chu, Z.; Yu, Z.; PourhosseiniAsl, M.; Tu, C.; Dong, S. Enhanced low-frequency magnetic field sensitivity in magnetoelectric composite with amplitude modulation method. Appl. Phys. Lett. 2019, 114, 132901. [Google Scholar] [CrossRef]
- PourhosseiniAsl, M.; Yu, Z.; Chu, Z.; Yang, J.; Xu, J.; Hou, Y.; Dong, S. Enhanced self-bias magnetoelectric effect in locally heat-treated ME laminated composite. Appl. Phys. Lett. 2019, 115, 112901. [Google Scholar] [CrossRef]
- Li, J.; Ma, G.; Zhang, S.; Wang, C.; Jin, Z.; Zong, W.; Zhao, G.; Wang, X.; Xu, J.; Cao, D.; et al. AC/DC dual-mode magnetoelectric sensor with high magnetic field resolution and broad operating bandwidth. AIP Adv. 2021, 11, 045015. [Google Scholar] [CrossRef]
- Chu, Z.; Shi, H.; PourhosseiniAsl, M.J.; Wu, J.; Shi, W.; Galo, X.; Yuan, X.; Dong, S. A magnetoelectric flux gate: New approach for weak DC magnetic field detection. Sci. Rep. 2017, 7, 8592. [Google Scholar] [CrossRef] [Green Version]
- Burdin, D.A.; Chashin, D.V.; Ekonomov, N.A.; Fetisov, Y.K.; Stashkevich, A.A. High-sensitivity dc field magnetometer using nonlinear resonance magnetoelectric effect. J. Magn. Magn. Mater. 2016, 405, 244–248. [Google Scholar] [CrossRef]
- Burdin, D.; Chashin, D.; Ekonomov, N.; Fetisov, L.; Fetisov, Y.; Shamonin, M. DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures. J. Phys. D Appl. Phys. 2016, 49, 375002. [Google Scholar] [CrossRef]
- Burdin, D.A.; Ekonomov, N.A.; Chashin, D.V.; Fetisov, L.Y.; Fetisov, Y.K.; Shamonin, M. Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures. Materials 2017, 10, 1183. [Google Scholar] [CrossRef] [Green Version]
- Schmelz, M.; Stolz, R.; Zakosarenko, V.; Schönau, T.; Anders, S.; Fritzsch, L.; Mück, M.; Meyer, M.; Meyer, H.-G. Sub-fT/Hz1/2 resolution and field-stable SQUID magnetometer based on low parasitic capacitance sub-micrometer cross-type Josephson tunnel junctions. Phys. C Supercond. Its Appl. 2012, 482, 27–32. [Google Scholar] [CrossRef]
- Shen, Y.; Gao, J.; Hasanyan, D.; Wang, Y.; Li, M.; Li, J.; Viehland, D. Investigation of vehicle induced magnetic anomaly by triple-axis magnetoelectric sensors. Smart Mater. Struct. 2012, 21, 115007. [Google Scholar] [CrossRef]
- Shen, Y.; Hasanyan, D.; Gao, J.; Wang, Y.; Li, J.; Viehland, D. A magnetic signature study using magnetoelectric laminate sensors. Smart Mater. Struct. 2013, 22, 095007. [Google Scholar] [CrossRef]
- Xu, J.; Leung, C.M.; Zhuang, X.; Li, J.; Viehland, D. Spatial magnetic source detection based on active mode magnetoelectric gradiometer with 2D and 3D configurations. J. Phys. D Appl. Phys. 2020, 53, 365002. [Google Scholar] [CrossRef]
- Chu, Z.; Shi, W.; Shi, H.; Chen, Q.; Wang, L.; PourhosseiniAsl, M.J.; Xiao, C.; Xie, T.; Dong, S. A 1D Magnetoelectric Sensor Array for Magnetic Sketching. Adv. Mater. Technol. 2019, 4, 1800484. [Google Scholar] [CrossRef]
- Zhai, J.; Dong, S.; Xing, Z.; Li, J.; Viehland, D. Geomagnetic sensor based on giant magnetoelectric effect. Appl. Phys. Lett. 2007, 91, 123513. [Google Scholar] [CrossRef] [Green Version]
- Duc, N.H.; Tu, B.D.; Ngoc, N.T.; Lap, V.D.; Giang, D.T.H. Metglas/PZT-Magnetoelectric 2-D Geomagnetic Device for Computing Precise Angular Position. IEEE Trans. Magn. 2013, 49, 4839–4842. [Google Scholar] [CrossRef]
- PourhosseiniAsl, M.J.; Chu, Z.; Gao, X.; Dong, S. A hexagonal-framed magnetoelectric composite for magnetic vector measurement. Appl. Phys. Lett. 2018, 113, 092902. [Google Scholar] [CrossRef]
- Zhang, J.; Li, P.; Wen, Y.; He, W.; Yang, J.; Yang, A.; Lu, C.; Li, W. Enhanced sensitivity in magnetoelectric current-sensing devices with frequency up-conversion mechanism by modulating the magnetostrictive strain. J. Appl. Phys. 2014, 115, 17E505. [Google Scholar] [CrossRef]
- Dong, S.; Li, J.-F.; Viehland, D. Vortex magnetic field sensor based on ring-type magnetoelectric laminate. Appl. Phys. Lett. 2004, 85, 2307–2309. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, P.; Wen, Y.; He, W.; Yang, A.; Lu, C. Packaged current-sensing device with self-biased magnetoelectric laminate for low-frequency weak-current detection. Smart Mater. Struct. 2014, 23, 095028. [Google Scholar] [CrossRef]
- Zhao, S.; Sun, L.; Gao, J.; Wang, J.; Shen, Y. Uniaxial ACFM detection system for metal crack size estimation using magnetic signature waveform analysis. Measurement 2020, 164, 108090. [Google Scholar] [CrossRef]
- Chu, Z.; Jiang, Z.; Mao, Z.; Shen, Y.; Gao, J.; Dong, S. Low-power eddy current detection with 1-1 type magnetoelectric sensor for pipeline cracks monitoring. Sens. Actuators A Phys. 2021, 318, 112496. [Google Scholar] [CrossRef]
- Wu, Z.; Bian, L.; Chen, S. Packaged angle-sensing device with magnetoelectric laminate composite and magnetic circuit. Sens. Actuators A Phys. 2018, 273, 232–239. [Google Scholar] [CrossRef]
- Lu, C.; Zhu, R.; Yu, F.; Jiang, X.; Liu, Z.; Dong, L.; Hua, Q.; Ou, Z. Gear rotational speed sensor based on FeCoSiB/Pb(Zr,Ti)O3 magnetoelectric composite. Measurement 2021, 168, 108409. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, B. Displacement Sensor with Nanometric resolution Based on Magnetoelectric Effect. IEEE Sens. J. 2021, 21, 12084–12091. [Google Scholar]
- Pereira, N.; Lima, A.C.; Correia, V.; Perinka, N.; Lanceros-Mendez, S.; Martins, P. Magnetic Proximity Sensor Based on Magnetoelectric Composites and Printed Coils. Materials 2020, 13, 1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Duan, Y.; Or, S.W.; Zhao, Y. Smart elasto-magneto-electric (EME) sensors for stress monitoring of steel cables: Design theory and experimental validation. Sensors 2014, 14, 13644–13660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Hu, C.; Wang, Z.; Li, Y.; Zhu, S.; Su, W.; Hu, Z.; Zhou, Z.; Liu, M. Wireless strain sensor based on the magnetic strain anisotropy dependent ferromagnetic resonance. AIP Adv. 2020, 10, 150310. [Google Scholar] [CrossRef]
- Hayes, P.; Klug, M.J.; Toxværd, S.; Durdaut, P.; Schell, V.; Teplyuk, A.; Burdin, D.; Winkler, A.; Weser, R.; Fetisov, Y.; et al. Converse Magnetoelectric Composite Resonator for Sensing Small Magnetic Fields. Sci. Rep. 2019, 9, 16355. [Google Scholar] [CrossRef]
- Xi, H.; Qian, X.; Lu, M.-C.; Mei, L.; Rupprecht, S.; Yang, Q.X.; Zhang, Q.M. A Room Temperature Ultrasensitive Magnetoelectric Susceptometer for Quantitative Tissue Iron Detection. Sci. Rep. 2016, 6, 29740. [Google Scholar] [CrossRef] [Green Version]
- Wikswo, J.P. SQUID magnetometers for biomagnetism and nondestructive testing: Important questions and initial answers. IEEE Trans. Appl. Supercond. 1995, 5, 74–120. [Google Scholar] [CrossRef]
- Zuo, S.; Schmalz, J.; Ozden, M.-O.; Gerken, M.; Su, J.; Niekiel, F.; Lofink, F.; Nazarpour, K.; Heidari, H. Ultrasensitive Magnetoelectric Sensing System for Pico-Tesla MagnetoMyoGraphy. IEEE Trans. Biomed. Circuits Syst 2020, 14, 971–984. [Google Scholar] [CrossRef]
- Ripka, P.; Janosek, M. Advances in Magnetic Field Sensors. IEEE Sens. J. 2010, 10, 1108–1116. [Google Scholar] [CrossRef] [Green Version]
- Lukat, N.; Friedrich, R.-M.; Spetzler, B.; Kirchhof, C.; Arndt, C.; Thormählen, L.; Faupel, F.; Selhuber-Unkel, C. Mapping of magnetic nanoparticles and cells using thin film magnetoelectric sensors based on the delta-E effect. Sens. Actuators A Phys. 2020, 309, 112023. [Google Scholar] [CrossRef]
- Gleich, B.; Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005, 435, 1214–1217. [Google Scholar] [CrossRef]
- Friedrich, R.M.; Zabel, S.; Galka, A.; Lukat, N.; Wagner, J.-M.; Kirchhof, C.; Quandt, E.; Mccord, J.; Selhuber-Unkel, C.; Siniatchkin, M.; et al. Magnetic particle mapping using magnetoelectric sensors as an imaging modality. Sci. Rep. 2019, 9, 2086. [Google Scholar] [CrossRef]
- Reermann, J.; Durdaut, P.; Salzer, S.; Demming, T.; Piorra, A.; Quandt, E.; Frey, N.; Höft, M.; Schmidt, G. Evaluation of magnetoelectric sensor systems for cardiological applications. Measurement 2018, 116, 230–238. [Google Scholar] [CrossRef]
Composition | Year | Connectivity | Working Mode | ||
---|---|---|---|---|---|
Terfenol-D/PZT [37] | 2007 | 3-1 | L-L | 0.5 | 18.2 |
NiFe2O4/PZT [42] | 2001 | 2-2 | L-T | 1.5 | / |
Terfenol-D/PZT [27] | 2002 | 2-2 | L-T | 5 | / |
Metglas/PVDF [43] | 2006 | 2-2 | L-T | 7.2 | 310 |
Metglas/P(VDF-TrFE) [44] | 2011 | 2-2 | L-L | 17.7 | 383 |
Lanthanum gallium tantalite/ permendur [45] | 2012 | 2-2 | / | 2.3 | 720 |
FeCoSiB/(Pt)/AlN in vacuum [46] | 2013 | 2-2 | L-T | / | 20,000 |
FeCoSiB/(Pt)/AlN [47] | 2016 | 2-2 | L-T | / | 5000 |
Metglas/LiNbO3 [48] | 2018 | 2-2 | L-T | 1.9 | 1704 |
FeBSiC/PZT [30] | 2006 | 2-1 | L-L | 22 | 500 |
Metglas/PMN-PT [31] | 2011 | 2-1 | L-L | 45 | 1100 |
Metglas/PMN-PT without laser treatment [8] | 2017 | 1-1 | L-T | 29.3 | 5500 |
Metglas/PMN-PT with laser treatment [8] | 2017 | 1-1 | L-T | 22.9 | 7000 |
Metglas/Mn-PMN-PZT with laser treatment [9] | 2020 | 1-1 | L-T | 23.6 | 12,500 |
Composition | Working Mode | Sensing Mode | ||
---|---|---|---|---|
Low-frequency magnetic field sensing | Metglas/Mn-PMNT [55] | Longitudinal vibration (Multi-L-T) | Passive sensing | 0.87 pT/ @ 30 Hz |
Metglas/PMN-PT [33] | Longitudinal vibration (Multi-push-pull) | Passive sensing | 5.1 pT/ @ 1 Hz | |
Metglas/PMN-PZT [61] | Longitudinal vibration (L-T) | Active Modulation | 33 pT/ @ 0.1 Hz | |
Resonant magnetic field sensing | Metglas/ LiNbO3 [48] | bending mode | Direct Sensing | 92 fT/√Hz |
FeCoSiB/(Pt)/AlN [47] | bending mode | Direct Sensing | 400 fT/√Hz | |
Metglas/PMN-PZT [8] | Longitudinal vibration (L-T) | Direct Sensing | 123 fT/√Hz | |
DC magnetic field sensing | langatate-Metglas [65] | bending mode | Nonlinear ME effect | 10 nT |
Metglas/PMN-PZT [9] | Longitudinal vibration (L-T) | Linear ME effect | 1 nT | |
FeCoSiB/(Pt)/AlN [26] | Lateral vibration | Delta-E effect | 0.8 nT | |
FeCoSiB/(Pt)/AlN [51] | Lateral vibration | Delta-E effect | 0.4 nT |
Magnetometer | Working Temperature | Power Consumption (mW) | Typical Size | Limitations | |
---|---|---|---|---|---|
ME sensor [33] | 0 °C to +50 °C ① | <1 | 80 mm × 10 mm @ ME composites | 5.1 | Vibration interference |
Magnetoresistive sensor ② | −40 °C to +125 °C | ~0.02 | 6 mm × 5 mm × 1.5 mm @ sensing element | 100 | Low sensitivity |
Giant magneto-impedance sensor ③ | −20 °C to +60 °C | 75 | 35 mm × 11 mm × 4.6 mm @ sensing element | 15–25 | Low sensitivity |
Fluxgate magnetometer ④ | −40 °C to +70 °C | 350 | ø100 mm × 125 mm @ system size | 2–6 | Power consumption |
Optically pumped magnetometer ⑤ | −35 °C to +50 °C | >12,000 | 175 cm × 28 cm × 28 cm @ system size | 4 | Complex setup |
SQUID magnetometer [68] | <−196 °C | >1000 | 12.5 mm × 12.5 mm @ chip size | <0.005 | Cooling |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Jiang, Z.; Zhang, S.; Mao, Z.; Shen, Y.; Chu, Z. Review of Magnetoelectric Sensors. Actuators 2021, 10, 109. https://doi.org/10.3390/act10060109
Gao J, Jiang Z, Zhang S, Mao Z, Shen Y, Chu Z. Review of Magnetoelectric Sensors. Actuators. 2021; 10(6):109. https://doi.org/10.3390/act10060109
Chicago/Turabian StyleGao, Junqi, Zekun Jiang, Shuangjie Zhang, Zhineng Mao, Ying Shen, and Zhaoqiang Chu. 2021. "Review of Magnetoelectric Sensors" Actuators 10, no. 6: 109. https://doi.org/10.3390/act10060109
APA StyleGao, J., Jiang, Z., Zhang, S., Mao, Z., Shen, Y., & Chu, Z. (2021). Review of Magnetoelectric Sensors. Actuators, 10(6), 109. https://doi.org/10.3390/act10060109