Male Layer Chicken’s Response to Dietary Moringa oleifera Meal in a Tropical Climate
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bird Management and Experimental Diets
2.2. Growth Performance Evaluation
2.3. Carcass Characteristics Measurement
2.4. Blood Sampling Assessment
2.5. Statistical Analyses
3. Results
3.1. Diet Effects on Growth Traits
3.1.1. Average Live Weight (LW)
3.1.2. Average Live Weight Gain (LWG) and Daily Live Weight Gain (DLWG)
3.1.3. Average Feed Intake (FI), Daily Feed Intake (DFI), Feed Conversion Ratio (FCR), and Mortality Rate (MR)
3.2. Diet Effects on Slaughter Performance
3.3. Diet Effects on Blood Characteristics
4. Discussion
4.1. Diet Effects on Growth Performance
4.2. Diet Effects on Slaughter Parameters
4.3. Diet Effects on Blood Traits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Haas, E.N.; Oliemans, E.; Gerwen, M.A.A.M. The need for an alternative to culling day-old male layer chicks: A survey on awareness, alternatives, and the willingness to pay for alternatives in a selected population of Dutch citizens. Front. Vet. Sci. 2021, 8, 381. [Google Scholar] [CrossRef]
- Murawska, D.; Gesek, M.; Witkowska, D. Suitability of layer-type male chicks for capon production. Poult. Sci. 2019, 98, 3345–3351. [Google Scholar] [CrossRef] [PubMed]
- Lambertz, C.; Wuthijaree, K.; Gaul, M. Performance, behavior, and health of male broilers and laying hens of 2 dual-purpose chicken genotypes. Poult. Sci. 2018, 97, 3564–3576. [Google Scholar] [CrossRef] [PubMed]
- Siekmann, L.; Meier-Dinkel, L.; Janisch, S.; Altmann, B.; Kaltwasser, C.; Sürie, C.; Krischek, C. Carcass quality, meat quality and sensory properties of the dual-purpose chicken Lohmann dual. Foods 2018, 7, 156. [Google Scholar] [CrossRef] [Green Version]
- Bruijnis, M.R.N.; Blok, V.; Stassen, E.N.; Gremmen, H.G.J. Moral ‘lock-in’ in responsible innovation, the ethical and social aspects of killing day-old chicks and its alternatives. J. Agric. Environ. Ethics 2015, 28, 939–960. [Google Scholar] [CrossRef] [Green Version]
- Bertechini, A.G.; Mazzuco, H.; Rodrigues, E.C.; Ramos, E.M. Study of the utilization of light egg-type males: A proposal for the sustainability of the egg industry. Poult. Sci. 2014, 93, 755–761. [Google Scholar] [CrossRef]
- Evaris, E.F.; Franco, L.S.; Castro, C.S. Slow-growing male chickens fit poultry production systems with outdoor access. Worlds Poult. Sci. J. 2019, 75, 429–444. [Google Scholar] [CrossRef]
- Evaris, E.F.; Franco, L.S.; Castro, C.S. Meat and bone quality of slow-growing male chickens raised with outdoor access in tropical climate. J. Food Compost. Anal. 2021, 98, 103802. [Google Scholar] [CrossRef]
- Giersberg, M.F.; Kemper, N. Rearing male layer chickens: A German perspective. Agriculture 2018, 8, 176. [Google Scholar] [CrossRef] [Green Version]
- Evaris, E.F.; Franco, L.S.; Castro, C.S. Productive performance and carcass yield of egg type male chickens raised with outdoor access in the tropics. Trop. Anim. Health Prod. 2020, 52, 3225–3232. [Google Scholar] [CrossRef] [PubMed]
- Dominant CZ Final Hybrid. Common Management Guide Layers Programs. Available online: https://xn--h1adbshod.xn--j1amh/uploads/s/t/i/j/tijxwkh7df3n/file/VxFRzVuk.pdf?preview=1 (accessed on 29 April 2022).
- Ibrahim, D.; Goshu, G.; Esatu, W.; Cahaner, A. Dual-purpose production of genetically different chicken crossbreeds in Ethiopia. 2. Egg and meat production of the final-crossbreed females and males. Poult. Sci. 2019, 98, 3405–3417. [Google Scholar] [CrossRef] [PubMed]
- Alwaleed, S.; Mickdam, E.; Ibrahim, A.; Sayed, A. The effect of dried Moringa oleifera leaves on growth performance, carcass characteristics and blood parameters of broiler chicken. Int. J. Vet. Sci. 2020, 3, 87–99. [Google Scholar] [CrossRef]
- Moreno-Mendoza, Y.; López-Villarreal, K.D.; Hernández-Martínez, C.A.; Rodríguez-Tovar, L.E.; Hernández-Coronado, A.C.; Soto-Domínguez, A.; Hume, M.E.; Méndez-Zamora, G. Effect of Moringa leaf powder and agave inulin on performance, intestinal morphology, and meat yield of broiler chickens. Poult. Sci. 2021, 100, 738–745. [Google Scholar] [CrossRef]
- Bagno, O.A.; Prokhorov, O.N.; Shevchenko, S.A.; Shevchenko, A.I.; Dyadichkina, T.V. Use of phytobioticts in farm animal feeding (review). Agric. Biol. 2018, 53, 687–697. [Google Scholar] [CrossRef]
- Kikusato, M. Phytobiotics to improve health and production of broiler chickens: Functions beyond the antioxidant activity. Anim. Biosci. 2021, 34, 345–353. [Google Scholar] [CrossRef]
- Kumar, N.; Pareek, S. Bioactive compounds of Moringa (Moringa species). In Bioactive Compounds in Underutilized Vegetables and Legumes Reference Series in Phytochemistry; Murthy, H.N., Paek, K.J., Eds.; Springer Nature: Berlin, Germany, 2021. [Google Scholar] [CrossRef]
- Jimenez, M.V.; Almatrafi, M.; Fernandez, M. Bioactive components in Moringa Oleifera leaves protect against chronic disease. Antioxidants 2017, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Basit, M.A.; Arifah, A.K.; Loh, T.C.; Saleha, A.A.; Salleh, A.; Kaka, U.; Idris, S.B. Effects of graded dose dietary supplementation of Piper betle leaf meal and Persicaria odorata leaf meal on growth performance, apparent ileal digestibility, and gut morphology in broilers. Saudi J. Biol. Sci. 2020, 27, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S. Nutritional and functional properties of Moringa oleifera. Metab. Open 2020, 8, 100061. [Google Scholar] [CrossRef]
- Mbailao, M.; Mianpereum, T.; Albert, N. Proximal and elemental composition of Moringa oleifera (Lam) leaves from three regions of Chad. J. Food Resour. Sci. 2014, 3, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Mahfuz, S.; Piao, X.S. Application of Moringa (Moringa oleifera) as natural feed supplement in poultry diets. Animals 2019, 9, 431. [Google Scholar] [CrossRef] [Green Version]
- Waterman, C.; Cheng, D.M.; Rojas-Silva, P.; Poulev, A.; Dreifus, J.; Lila, M.A.; Raskin, I. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. Phytochemistry 2014, 103, 114–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divya; Mandal, A.B.; Biswas, A.; Yadav, A.S.; Biswas, A.K. Effect of dietary Moringa oleífera leaves powder on growth performance, blood chemistry, meat quality and gut microflora of broiler chicks. Anim. Nutr. Feed Techcol. 2014, 14, 349–357. [Google Scholar] [CrossRef]
- Nkukwana, T.T.; Muchenje, V.; Pieterse, E.; Masika, P.J.; Mabusela, T.P.; Hoffman, L.C.; Dzama, K. Effect of Moringa oleifera leaf meal on growth performance, apparent digestibility, digestive organ size and carcass yield in broiler chickens. Livest. Sci. 2014, 161, 139–146. [Google Scholar] [CrossRef]
- Cui, Y.M.; Wang, J.; Lu, W.; Zhang, H.J.; Wu, S.G.; Qi, G.H. Effect of dietary supplementation with Moringa oleifera leaf on performance, meat quality, and oxidative stability of meat in broilers. Poult. Sci. 2018, 97, 2836–2844. [Google Scholar] [CrossRef]
- Sebola, N.A.; Mlambo, V.; Mokoboki, H.K.; Muchenje, V. Growth performance and carcass characteristics of three chicken strains in response to incremental levels of dietary Moringa oleifera leaf meal. Livest. Sci. 2015, 178, 202–208. [Google Scholar] [CrossRef]
- INEGI Instituto Nacional de Estadística Geográfica e Informática. Información de Yucatán, México. Available online: http://www.cuentame.inegi.org.mx/monografias/informacion/yuc/territorio/clima.aspx?tema= (accessed on 29 April 2022).
- Baas-Osorio, A.; Sarmiento-Franco, L.; Santos-Ricalde, R.; Segura-Correa, J.C. Estimation of the requirement of Metabolizable Energy and Crude Protein for growing in Rhode Island red chickens, under tropical conditions of Southeastern Mexico. Trop. Subtrop. Agroecosystems 2019, 22, 487–497. [Google Scholar]
- AOAC International. Official Methods of Analysis, 18th ed.; American Association of Official Analytical Chemists: Arlington, TX, USA, 2006. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Ortíz-Domínguez, G.A.; Marin-Tun, C.G.; Ventura-Cordero, J.; González-Pech, P.G.; Capetillo-Leal, C.M.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A. Comparing the in vitro digestibility of leaves from tropical trees when using the rumen liquor from cattle, sheep or goats. Small Rumin. Res. 2021, 205, 106561. [Google Scholar] [CrossRef]
- Normas Mexicanas 2017. Alimentos Para Animales—Determinación de Humedad en Alimentos Balanceados e Ingredientes Mayores. PROY-NMX-Y-098-SCFI-2017. Available online: https://vlex.com.mx/vid/710427109?_ga=2.190615528.2100063110.1579694004-151288393.1579694004 (accessed on 29 April 2022).
- Hernandez, M.; Martin, S.; Fores, P. Clinical hematology and blood chemistry values for the common Buzzard (Buteo buteo). J. Raptor Res. 1990, 24, 113–119. [Google Scholar]
- Minitab 19. Getting Started with Minitab 19 for Windows. Available online: https://www.minitab.com/content/dam/www/en/uploadedfiles/documents/getting-started/Minitab19GettingStarted_EN.pdf (accessed on 29 April 2022).
- Kumar, A.; Kumar, K.; Kumar, S.; Singh, P.K. Effect of feeding Moringa oleifera leaf meal on production efficiency and carcass characteristics of Vanaraja chicken in Tropics. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1213–1220. [Google Scholar]
- Alshukri, A.Y.; Ali, N.A.; Abbas, R.J.; Alkassar, A.M.; Jameel, Y.J. Effect of dietary supplementation with differing levels of Moringa oleifera leaf meal on the productivity and carcass characteristics of broiler chickens. Int. J. Poult. Sci. 2018, 17, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Gadzirayi, C.T.; Mupangwa, J.F. Feed intake and growth performance of indigenous chicks fed diets with Moringa oleifera leaf meal as a protein supplement during early brooding stage. Int. J. Poult. Sci. 2014, 13, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Gakuya, D.W.; Mbugua, P.N.; Mwaniki, S.M.; Njuguna, A.; Muchemi, G.M.; Njuguna, A. Effect of supplementation of Moringa oleifera (LAM) leaf meal in layer chicken feed. Int. J. Poult. Sci. 2014, 13, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Ayssiwede, S.B.; Dieng, A.; Bello, H.; Chrysostome, C.A.A.M.; Hane, M.B.; Mankor, A.; Dahouda, M.; Houinato, M.R.; Hornick, J.L.; Missohou, A. Effects of Moringa oleifera (Lam.) leaves meal incorporation in diets on growth performances, carcass characteristics and economics results of growing indigenous senegal chickens. Pak. J. Nutr. 2011, 10, 1132–1145. [Google Scholar] [CrossRef] [Green Version]
- Etienne, L.N.G.; Edouard, N.G.K.; Ysidor, K.N.G. Evaluation of the nutritional effect of Moringa oleifera leaf powder on the growth of traditional chickens in Northern Côte d’Ivoire. World J. Agric. Res. 2020, 8, 45–51. [Google Scholar] [CrossRef]
- Teclegeorgish, Z.W.; Aphane, Y.M.; Mokgalaka, N.S.; Steenkamp, P.; Tembu, V.J. Nutrients, secondary metabolites and anti-oxidant activity of Moringa oleifera leaves and Moringa-based commercial products. S. Afr. J. Bot. 2021, 142, 409–420. [Google Scholar] [CrossRef]
- Kala, C.; Ali, S.S.; Ahmad, N.; Gilani, S.J.; Khan, N.A. Isothiocyanates: A Review. Res. J. Pharmacogn. 2018, 5, 71–89. [Google Scholar] [CrossRef]
- Chongwe, M.A. The Effect of Moringa Supplementation on Growth and Health of Indigenous Zambian Chickens. Master’s Thesis, University of Zambia, Lusaka, Zambia, 2011. Available online: http://dspace.unza.zm/bitstream/handle/123456789/1065/chongwe.pdf?sequence=1&isAllowed=y (accessed on 29 April 2022).
- Gómez, N.I.; Rébak, G.; Fernández, R.; Sindik, M.; Sanz, P. Comportamiento productivo de pollos parrilleros alimentados con Moringa oleifera en Formosa, Argentina. Rev. Vet. 2016, 27, 7–10. [Google Scholar] [CrossRef]
- Melesse, A.; Getye, Y.; Berihun, K.; Banerjee, S. Effect of feeding graded levels of Moringa stenopetala leaf meal on growth performance, carcass traits and some serum biochemical parameters of Koekoek chickens. Livest. Sci. 2013, 157, 498–505. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Abd El-Hack, M.E.; Ragni, M. The efficacy of high-protein tropical forages as alternative protein sourcesfor chickens: A review. Agriculture 2018, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.; Bhuiyan, M.M.; Iji, P.A. Nutritive value of vegetable protein diets for broiler chickens and selection of diets containing different vegetable or animal proteins. Worlds Poult. Sci. J. 2015, 71, 15–25. [Google Scholar] [CrossRef]
- Zook, D. Protecting Small Poultry Flocks from Predators, 2020. AFS-8221. Available online: https://extension.okstate.edu/fact-sheets/protecting-small-poultry-flocks-from-predators.html (accessed on 29 April 2022).
- Jacob, J.; Pescatore, T.; Springer, M. Predator Management for Small-Scale Poultry Enterprises in Kentucky ID 245. 2017. Available online: http://www2.ca.uky.edu/agcomm/pubs/ID/ID245/ID245.pdf (accessed on 29 April 2022).
- Okosun, S.E.; Eguaoje, S.A. Growth performance, carcass response and cost benefit analysis of cockerel fed graded levels of Cassava (Manihot Esculenta) grit supplemented with Moringa (Moringa oleifera) leaf meal. Anim. Res. Int. 2017, 14, 2619–2628. [Google Scholar]
- Onunkwo, D.N.; George, O.S. Effects of Moringa oleifera leaf meal on the growth performance and carcass characteristics of broiler birds. J. Agric. Vet. Sci. 2015, 8, 63–66. [Google Scholar]
- David, L.S.; Vidanarachchi, J.K.; Samarasinghe, K.; Cyril, H.W.; Dematawewa, C.M.B. Effects of Moringa based feed additives on the growth performance and carcass quality of broiler chicken. Trop. Agric. Res. 2012, 24, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Edu, N.E.; Ekpo, P.B.; Umoyen, A.J.; Thomas, T.L.; Akpan, M.O.; Leo, E.A.; Job, I.E. Evaluating the effect of Moringa (Moringa oleifera) leaf supplemented feed on the growth and carcass quality of broilers in Calabar. Asian J. Sci. Res. 2019, 7, 1–7. [Google Scholar] [CrossRef]
- Zanu, H.K.; Asiedu, P.; Tampuori, M.; Abada, M.; Asante, I. Possibilities of using Moringa (Moringa oleifera) leaf meal as a partial substitute for ffishmeal in broiler chicken diets. J. Anim. Feed Sci. 2012, 2, 70–75. [Google Scholar]
- Melesse, A.; Tiruneh, W.; Negesse, T. Nutrient composition and effects of feeding different levels of Moringa stenopetala leaf meal on carcass traits of Rhode Island Red dual-purpose grower chickens. Eth. J. Anim. Prod. 2012, 12, 37–50. [Google Scholar]
- Krauze, M. Phytobiotics, a Natural Growth Promoter for Poultry. In Advanced Studies in the 21st Century Animal Nutrition, 2nd ed.; Babinszky, L., Oliveira, J., Santos, E.M., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Rehman, H.F.; Zaneb, H.I.; Masood, S.; Yousaf, M.S.; Ashraf, S.; Khan, I.; Shah, M.; Khilji, M.S.; Rehman, H. Effect of Moringa oleifera leaf powder supplementation on pectoral muscle quality and morphometric characteristics of tibia bone in broiler chickens. Braz. J. Poult. Sci. 2018, 20, 817–824. [Google Scholar] [CrossRef]
- Potti, R.B.; Fahad, M.O. Extraction and characterization of collagen from broiler chicken feet (Gallus gallus domesticus)-Biomolecules from poultry waste. J. Pure Appl. Microbiol. 2017, 11, 315–322. [Google Scholar] [CrossRef]
- Elsesy, T.A.; Sakr, D.M.; Kdous, M.F.S.A.; Elhae, R.A.A. Utilization of the chicken feet and skeleton meat for the production of dried chicken soup. Middle East J. Agric. Res. 2015, 4, 938–948. [Google Scholar]
- Svihus, B. Function of the digestive system. J. Appl. Poult. Res. 2014, 23, 306–314. [Google Scholar] [CrossRef]
- Nduku, X.P.; Mabusela, S.P.; Nkukwana, T.T. Growth and meat quality of broiler chickens fed Moringa oleifera leaf meal, a probiotic and an organic acid. S. Afr. J. Anim. Sci. 2020, 50, 710–718. [Google Scholar] [CrossRef]
- Sarker, S.K.; Rana, M.; Khatun, H.; Faruque, S.; Sarker, N.R.; Sharmin, F.; Islam, N. Moringa leaf meal as natural feed additives on the growth performance and meat quality of commercial broiler chicken. Asian J. Med. Biol. Res. 2017, 3, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Igugo, R.U. An assessment of the use of varying levels of Moringa oleifera leaf meal as a substitute for vitamin+mineral premix in finisher broiler diet. J. Exp. Res. 2014, 2, 88–92. [Google Scholar]
- Antyev, M.; Wafar, R.J.; Akyume, T.T. Evaluation of Moringa (Moringa oleifera) leaf meal as a feed additive in broiler chickens diets. Int. J. Vet. Sci. Anim. Husb. 2020, 5, 12–17. [Google Scholar]
- Sebola, N.A.; Mokoboki, H.K. Influence of dietary Moringa oleifera leaf meal on haematological parameters, serum biochemical indices and weight of internal organs of chickens. Adv. Anim. Vet. Sci. 2019, 7, 1042–1048. [Google Scholar] [CrossRef]
- Shang, Q.; Wu, D.; Liu, H.; Mahfuz, S.; Piao, X. The impact of Wheat Bran on the morphology and physiology of the gastrointestinal tract in broiler chickens. Animals 2020, 10, 1831. [Google Scholar] [CrossRef]
- Ashour, E.A.; El-Kholy, M.S.; Alagawany, M.; El-Hack, A.; Mohamed, E.; Mohamed, L.A.; Tufarelli, V. Effect of dietary supplementation with Moringa oleifera leaves and/or seeds powder on production, egg characteristics, hatchability and blood chemistry of laying Japanese quails. Sustainability 2020, 12, 2463. [Google Scholar] [CrossRef] [Green Version]
- Abbas, R.J.; Ali, N.A.L.; Alkassar, A.M.; Jameel, Y.J. Haematological and biochemical indices of broiler chicks fed at different levels of Moringa oleifera leaf meal. Biochem. Cell. Arch. 2018, 18, 1931–1936. [Google Scholar]
Chemical Analysis (%) | MOM |
---|---|
Crude Protein (CP) | 19.11 |
Crude Fiber (CF) | 15.39 |
Neutral Detergent Fiber (NDF) | 48.78 |
Acid Detergent Fiber (ADF) | 25.43 |
Ether Extract (EE) | 2.97 |
Ash | 8.74 |
Lignin | 5.70 |
Condensed Tannins | 3.27 |
Total Tannins | 0.92 |
Total Phenols | 2.78 |
Ingredients (%) | T1 | T2 | T3 |
---|---|---|---|
MOM | 0 | 3 | 6 |
Corn meal | 69.96 | 66.48 | 64.10 |
Soybean meal (44% CP) | 25.11 | 24.47 | 23.55 |
Choline chloride | 0.05 | 0.05 | 0.05 |
Calcium carbonate | 2.31 | 2.50 | 2.53 |
Calcium orthophosphate | 1.70 | 2.64 | 2.90 |
Salt | 0.25 | 0.25 | 0.25 |
Lysine | 0.28 | 0.27 | 0.27 |
DL-Methionine | 0.16 | 0.16 | 0.17 |
Vitamins premix 1 | 0.10 | 0.10 | 0.10 |
Minerals premix 2 | 0.08 | 0.08 | 0.08 |
Total | 100 | 100 | 100 |
Calculated values | |||
Metabolizable Energy (Mcal/kg) | 2.94 | 2.91 | 2.90 |
Crude Protein (%) | 17.00 | 17.01 | 17.00 |
Crude Fiber (%) | 3.30 | 3.99 | 4.68 |
Lysine (%) | 1.13 | 1.13 | 1.13 |
Methionine (%) | 0.44 | 0.49 | 0.55 |
Methionine + Cystine (%) | 0.73 | 0.73 | 0.73 |
Calcium (%) | 1.34 | 1.68 | 1.81 |
Available phosphorus (%) | 0.68 | 0.85 | 0.89 |
Chemical analysis (%) dry matter base | |||
Dry matter | 87.35 | 87.56 | 88.05 |
Crude Protein | 21.01 | 20.17 | 21.75 |
Crude Fiber | 1.99 | 2.57 | 2.66 |
Traits | T1 (0 g/kg MOM) (Mean ± SEM *) | T2 (30 g/kg MOM) (Mean ± SEM) | T3 (60 g/kg MOM) (Mean ± SEM) | p-Value |
---|---|---|---|---|
LW (g/b) | ||||
72 d | 1099.9 ± 14.0 | 1080.8 ± 19.1 | 1100.1 ± 14.1 | 0.616 |
99 d | 1766.7 a ± 18.1 | 1661.9 b ± 25.3 | 1658.2 b ± 18.6 | 0.001 |
120 d | 2218.1 ± 22.4 | 2164.4 ± 33.3 | 2176.6 ± 24.8 | 0.341 |
LWG (g/b) | ||||
72–99 d (first 4 weeks of trial) | 666.8 a ± 8.4 | 581.0 b ± 12.6 | 556.0 b ± 8.6 | 0.001 |
100–120 d (last 3 weeks of trial) | 451.4 b ± 9.9 | 502.6 b ± 12.7 | 518.4 a ± 12.5 | 0.001 |
Cumulative (72–120 d) | 1118.2 ± 13.9 | 1083.6 ± 19.5 | 1074.4 ± 16.4 | 0.153 |
DLWG (g/b/d) | ||||
72–99 d | 23.8 a ± 0.3 | 20.8 b ± 0.5 | 19.9 b ± 0.3 | 0.001 |
100–120 d | 22.6 b ± 0.5 | 25.1 a ± 0.6 | 25.9 a ± 0.6 | 0.001 |
Cumulative (72–120 d) | 23.3 ± 0.3 | 22.6 ± 0.4 | 22.4 ± 0.3 | 0.153 |
Traits | T1 (0 g/kg MOM) (Mean ± SEM *) | T2 (30 g/kg MOM) (Mean ± SEM) | T3 (60 g/kg MOM) (Mean ± SEM) | p-Value |
---|---|---|---|---|
FI (g/b) | ||||
72–99 d | 2677.2 ± 29.8 | 2604.3 ± 66.6 | 2512.0 ± 114.7 | 0.354 |
100–120 d | 1958.4 b ± 34.7 | 2285.4 a ± 16.4 | 2384.2 a ± 37.4 | 0.001 |
Cumulative (72–120 d) | 4635.6 ± 45.2 | 4889.7 ± 74.4 | 4896.2 ± 148.2 | 0.140 |
DFI (g/b/d) | ||||
72–99 d | 97.0 ± 1.2 | 94.0 ± 2.9 | 90.6 ± 4.4 | 0.373 |
100–120 d | 97.6 ± 1.7 | 114.4 ± 0.9 | 112.1 ± 8.7 | 0.072 |
Cumulative (72–120 d) | 97.3 ± 1.1 | 104.2 ± 1.6 | 101.3 ± 6.3 | 0.456 |
FCR | ||||
72–99 d | 4.0 b ± 0.0 | 4.5 a ± 0.2 | 4.5 a ± 0.2 | 0.016 |
100–120 d | 4.3 ± 0.1 | 4.6 ± 0.2 | 4.7 ± 0.2 | 0.247 |
Cumulative (72–120 d) | 4.2 b ± 0.0 | 4.5 a ± 0.1 | 4.6 a ± 0.1 | 0.001 |
MR (%) 1 | ||||
72–99 d | 0.0 | 0.0 | 0.0 | |
100–120 d | 0.0 | 0.0 | 7.6 | |
Cumulative (72–120 d) | 0.0 | 0.0 | 7.6 |
Traits | T1 (0 g/kg MOM) (Mean ± SEM *) | T2 (3 g/kg MOM) (Mean ± SEM) | T3 (6 g/kg MOM) (Mean ± SEM) | p-Value |
---|---|---|---|---|
FLW * (g) | 2349 (covariate) | 2349 (covariate) | 2349 (covariate) | |
ECW ** (g) | 1540.6 ± 10.5 | 1515.2 ± 10.5 | 1542.5 ± 10.8 | 0.134 |
ECY *** (%) | 65.6 ± 0.5 | 64.5 ± 0.5 | 65.7 ± 0.5 | 0.116 |
Abdominal Fat | 0.0 | 0.0 | 0.0 | |
Breast Weight (g) | 385.4 b ± 5.3 | 403.5 a ± 5.3 | 401.6 a ± 5.5 | 0.035 |
Breast Yield (% FLW) | 16.4 b ± 0.2 | 17.1 a ± 0.2 | 17.1 a ± 0.2 | 0.045 |
Breast Yield (% ECW) | 25.0 b ± 0.3 | 26.6 a ± 0.3 | 26.0 a ± 0.3 | 0.002 |
Leg Weight (g) | 563.9 ± 4.3 | 559.5 ± 4.3 | 567.1 ± 4.4 | 0.484 |
Leg Yield (% FLW) | 24.0 ± 0.2 | 23.8 ± 0.2 | 24.2 ± 0.2 | 0.487 |
Leg Yield (% ECW) | 36.6 ± 0.2 | 37.0 ± 0.2 | 36.8 ± 0.2 | 0.449 |
Wing Weight (g) | 208.1 ± 2.0 | 206.3 ± 2.0 | 213.2 ± 2.1 | 0.065 |
Wing Yield (% FLW) | 8.9 ± 0.1 | 8.8 ± 0.1 | 9.1 ± 0.1 | 0.057 |
Wing Yield (% ECW) | 13.5 ± 0.1 | 13.6 ± 0.1 | 13.8 ± 0.1 | 0.290 |
Feet Weight (g) | 103.5a ± 1.2 | 96.9 b ± 1.2 | 100.3 ab ± 1.2 | 0.001 |
Feet Yield (% FLW) | 4.4 a ± 0.1 | 4.1 b ± 0.1 | 4.3 ab ± 0.1 | 0.001 |
Feet Yield (% ECW) | 6.7 a ± 0.1 | 4.4 b ± 0.1 | 6.5 ab ± 0.1 | 0.032 |
Gizzard Weight (g) | 51.4 b ± 2.3 | 59.4 a ± 2.3 | 57.0 a ± 2.4 | 0.041 |
Gizzard Yield (% FLW) | 2.2 ± 0.1 | 2.5 ± 0.1 | 2.4 ± 0.1 | 0.057 |
Gizzard Yield (% ECW) | 3.3 b ± 0.1 | 3.9 a ± 0.1 | 3.7 a ± 0.1 | 0.023 |
Liver Weight (g) | 31.1 ± 0.8 | 30.0 ± 0.8 | 31.8 ± 0.8 | 0.325 |
Liver Yield (% FLW) | 1.3 ± 0.0 | 128.0 ± 0.0 | 1.4 ± 0.0 | 0.358 |
Liver Yield (% ECW) | 2.0 ± 0.1 | 2.0 ± 0.1 | 2.1 ± 0.1 | 0.064 |
Heart Weight (g) | 9.8 ± 0.3 | 8.9 ± 0.3 | 9.2 ± 0.3 | 0.084 |
Heart Yield (% FLW) | 0.4 ± 0.0 | 0.4 ± 0.0 | 0.4 ± 0.0 | 0.082 |
Heart Yield (% ECW) | 0.6 ± 0.0 | 0.6 ± 0.0 | 0.6 ± 0.0 | 0.154 |
Traits | T1 (0 g/kg MOM) (Mean ± SEM *) | T2 (3 g/kg MOM) (Mean ± SEM) | T3 (6 g/kg MOM) (Mean ± SEM) | p-Value |
---|---|---|---|---|
Total protein (g/dL) | 3.3 ± 0.1 | 3.4 ± 0.1 | 3.4 ± 0.1 | 0.539 |
Albumin (g/dL) | 1.7 ± 0.0 | 1.8 ± 0.1 | 1.9 ± 0.1 | 0.343 |
Lymphocytes (%) | 48.5 ± 3.4 | 47.0 ± 4.7 | 51.7 ± 2.3 | 0.650 |
Erythrocytes (million/mm3) | 1.9 ± 0.2 | 1.8 ± 0.1 | 2.0 ± 0.2 | 0.740 |
Globulin (g/dL) | 1.5 ± 0.1 | 1.6 ± 0.1 | 1.5 ± 0.1 | 0.900 |
ALP * (UI/L) | 992.9 ± 47.5 | 1129.3 ± 85.0 | 1059.6 ± 46.3 | 0.314 |
MCV ** (fl) | 178.3 ± 15.2 | 184.9 ± 13.1 | 164.0 ± 9.4 | 0.505 |
Eosinophils (%) | 3.1 ± 0.7 | 4.6 ± 0.8 | 3.5 ± 0.8 | 0.375 |
Hemoglobin (g/dL) | 10.7 ± 0.3 | 10.5 ± 0.3 | 10.2 ± 0.3 | 0.396 |
Hematocrit (%) | 31.8 ± 0.9 | 31.7 ± 0.7 | 30.6 ± 0.9 | 0.546 |
MCHC *** (g/dL) | 33.7 ± 0.6 | 33.3 ± 0.3 | 33.2 ± 0.3 | 0.696 |
Leukocytes (/mm3) | 26,916.7 ± 1083.4 | 25,500.0 ± 1515.0 | 25,000.0 ± 1614.3 | 0.618 |
Heterophils (%) | 44.3 ± 3.3 | 44.3 ± 4.0 | 41.2 ± 2.3 | 0.743 |
Monocytes (%) | 4.2 ± 0.5 | 4.2 ± 0.4 | 3.7 ± 0.4 | 0.678 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faustin Evaris, E.; Sarmiento Franco, L.; Sandoval Castro, C.; Segura Correa, J.; Caamal Maldonado, J.A. Male Layer Chicken’s Response to Dietary Moringa oleifera Meal in a Tropical Climate. Animals 2022, 12, 1843. https://doi.org/10.3390/ani12141843
Faustin Evaris E, Sarmiento Franco L, Sandoval Castro C, Segura Correa J, Caamal Maldonado JA. Male Layer Chicken’s Response to Dietary Moringa oleifera Meal in a Tropical Climate. Animals. 2022; 12(14):1843. https://doi.org/10.3390/ani12141843
Chicago/Turabian StyleFaustin Evaris, Esther, Luis Sarmiento Franco, Carlos Sandoval Castro, Jose Segura Correa, and Jesús Arturo Caamal Maldonado. 2022. "Male Layer Chicken’s Response to Dietary Moringa oleifera Meal in a Tropical Climate" Animals 12, no. 14: 1843. https://doi.org/10.3390/ani12141843
APA StyleFaustin Evaris, E., Sarmiento Franco, L., Sandoval Castro, C., Segura Correa, J., & Caamal Maldonado, J. A. (2022). Male Layer Chicken’s Response to Dietary Moringa oleifera Meal in a Tropical Climate. Animals, 12(14), 1843. https://doi.org/10.3390/ani12141843