Simulation and Analysis of Single-Mode Microring Resonators in Lithium Niobate Thin Films
<p>A schematic of the waveguide-coupled microring resonator on LNOI.</p> "> Figure 2
<p>Effective index of the TE (solid lines) and TM (dashed lines) modes in LN waveguides as a function of the film thickness for a waveguide with 0.7 μm width; the modes were calculated at λ = 1.55 μm.</p> "> Figure 3
<p>Effective index of the TE (solid lines) and TM (dashed lines) modes in LN waveguides as a function of the width for a 0.5 μm thick film. The modes were calculated at λ = 1.55 μm.</p> "> Figure 4
<p>The propagation losses of LN planar waveguide with the different SiO<sub>2</sub> layer thicknesses.</p> "> Figure 5
<p>(<b>a</b>) Q-factor of microring resonator as different ring radii for different gap sizes, (<b>b</b>) Bending loss variation as bending radius. The modes were calculated at λ = around 1.55 μm.</p> "> Figure 6
<p>FSR of microring resonators as different ring radii. The modes were calculated at λ = around 1.55 μm.</p> "> Figure 7
<p>The LN microring resonator was embedded in the middle SiO<sub>2</sub> layer, and the electrodes were placed over below and above the SiO<sub>2</sub> layer.</p> "> Figure 8
<p>Transmission spectra of wavelength shift due to different electric field intensities in the Z-direction. The calculations referred to the TM mode at the microring radius R = 20 μm.</p> ">
Abstract
:1. Introduction
2. Device Description
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weis, R.S.; Gaylord, T.K. Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A 1985, 37, 191–203. [Google Scholar] [CrossRef]
- Chen, L.; Wood, M.G.; Reano, R.M. 12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes. Opt. Express 2013, 21, 27003–27010. [Google Scholar] [CrossRef] [PubMed]
- Rabiei, P.; Gunter, P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding. Appl. Phys. Lett. 2004, 85, 4603–4605. [Google Scholar] [CrossRef]
- Poberaj, G.; Hu, H.; Sohler, W.; Günter, P. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon. Rev. 2012, 6, 488–503. [Google Scholar] [CrossRef]
- Tao, S.H.; Mao, S.C.; Song, J.F.; Fang, Q.; Yu, M.B.; Lo, G.Q.; Kwong, D.L. Ultra-high order ring resonator system with sharp transmission peaks. Opt. Express 2010, 18, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Rafizadeh, D.; Zhang, J.P.; Hagness, S.C.; Taflove, A.; Stair, K.A.; Ho, S.T.; Tiberio, R.C. Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range. Opt. Lett. 1997, 22, 1244–1246. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Fathpour, S. Compact lithium niobate electrooptic modulators. IEEE J. Sel. Top. Quantum Elect. 2018, 24, 1–14. [Google Scholar] [CrossRef]
- Almeida, V.R.; Barrios, C.A.; Panepucci, R.R.; Lipson, M. All-optical control of light on a silicon chip. Nature 2004, 431, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
- Shahoei, H.; Dumais, P.; Yao, J. Continuously tunable photonic fractional Hilbert transformer using a high-contrast germanium-doped silica-on-silicon microring resonator. Opt. Lett. 2014, 39, 2778–2781. [Google Scholar] [CrossRef] [PubMed]
- Rabiei, P.; Steier, W.H.; Zhang, C.; Dalton, L.R. Polymer micro-ring filters and modulators. J. Lightwave Technol. 2002, 20, 1968–1975. [Google Scholar] [CrossRef]
- Guarino, A.; Poberaj, G.; Rezzonico, D.; Degl’innocenti, R.; Günter, P. Electro-optically tunable microring resonators in lithium niobate. Nat. Photon. 2007, 1, 407–410. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Cheng, R.; Shams-Ansari, A.; Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 2017, 4, 1536–1537. [Google Scholar] [CrossRef]
- Siew, S.Y.; Saha, S.S.; Tsang, M.; Danner, A.J. Rib microring resonators in lithium niobate on insulator. IEEE Photon. Technol. Lett. 2016, 28, 573–576. [Google Scholar] [CrossRef]
- Chin, M.K.; Ho, S.T. Design and modeling of waveguide-coupled single-mode microring resonators. J. Lightwave Technol. 1998, 16, 1433–1446. [Google Scholar] [CrossRef]
- Lalanne, P.; Hugonin, J.P. Bloch-wave engineering for high-Q, small-V microcavities. IEEE J. Sel. Top. Quantum Elect. 2003, 39, 1430–1438. [Google Scholar] [CrossRef]
- Hazura, H.; Shaari, S.; Menon, P.S.; Majlis, B.Y.; Mardiana, B.; Hanim, A.R. Design parameters investigation of single mode silicon-on-insulator (SOI) microring channel dropping filter. Adv. Sci. Lett. 2013, 19, 199–202. [Google Scholar] [CrossRef]
- Hu, H.; Yang, J.; Gui, L.; Sohler, W. Lithium niobate-on-insulator (LNOI): Status and perspectives. Proc. SPIE. 2012, 8431, 84311D. [Google Scholar]
- Rao, A.; Fathpour, S. Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics. IEEE J. Sel. Top. Quantum Elect. 2018, 24, 8200912. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y.; Jiang, Y.; Kong, R.; Hu, H. Grating coupler on single-crystal lithium niobate thin film. Opt. Mater. 2017, 72, 136–139. [Google Scholar] [CrossRef]
- Lumerical Solutions. Available online: http://www.lumerical. com/ (accessed on 4 August 2018).
- Schlarb, U.; Betzler, K. A generalized sellmeier equation for the refractive indices of lithium niobate. Ferroelectrics 1994, 156, 99–104. [Google Scholar] [CrossRef]
- Chen, Z.; Peng, R.; Wang, Y.; Zhu, H.; Hu, H. Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector. Opt. Mater. Express 2017, 7, 4010–4017. [Google Scholar] [CrossRef]
- Han, H.; Cai, L.; Xiang, B.; Jiang, Y.; Hu, H. Lithium-rich vapor transport equilibration in single-crystal lithium niobate thin film at low temperature. Opt. Mater. Express 2015, 5, 2634–2641. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Xiang, B.; Zhang, J. Simulation and Analysis of Single-Mode Microring Resonators in Lithium Niobate Thin Films. Crystals 2018, 8, 342. https://doi.org/10.3390/cryst8090342
Han H, Xiang B, Zhang J. Simulation and Analysis of Single-Mode Microring Resonators in Lithium Niobate Thin Films. Crystals. 2018; 8(9):342. https://doi.org/10.3390/cryst8090342
Chicago/Turabian StyleHan, Huangpu, Bingxi Xiang, and Jiali Zhang. 2018. "Simulation and Analysis of Single-Mode Microring Resonators in Lithium Niobate Thin Films" Crystals 8, no. 9: 342. https://doi.org/10.3390/cryst8090342
APA StyleHan, H., Xiang, B., & Zhang, J. (2018). Simulation and Analysis of Single-Mode Microring Resonators in Lithium Niobate Thin Films. Crystals, 8(9), 342. https://doi.org/10.3390/cryst8090342