Highly Visible Photoluminescence from Ta-Doped Structures of ZnO Films Grown by HFCVD
<p>Schematic diagram of the hot filament chemical vapor deposition (HFCVD) homemade system used to grown films in this work.</p> "> Figure 2
<p>The principal components inside of the reaction chamber.</p> "> Figure 3
<p>X-ray diffraction (XRD) patterns for (<b>a</b>) undoped ZnO film, and ZnO:Ta-doped films grown with a pellet weight of (<b>b</b>) 50 mg, (<b>c</b>) 100 mg, (<b>d</b>) 200 mg, (<b>e</b>) 250 mg, and (<b>f</b>) 300 mg of Ta<sub>2</sub>O<sub>5</sub>.</p> "> Figure 4
<p>Patterns for (<b>a</b>) undoped ZnO film, and ZnO:Ta-doped films grown with a pellet weight of (<b>b</b>) 50 mg, (<b>c</b>) 100 mg, (<b>d</b>) 200 mg, (<b>e</b>) 250 mg, and (<b>f</b>) 300 mg of Ta<sub>2</sub>O<sub>5</sub>, in a range of 2θ = 30° to 66°.</p> "> Figure 5
<p>Raman shift from the samples of (<b>a</b>) undoped ZnO, and ZnO:Ta-doped films, grown with pellet weight of (<b>b</b>) 50 mg, (<b>c</b>) 200 mg, and (<b>d</b>) 300 mg of Ta<sub>2</sub>O<sub>5</sub>.</p> "> Figure 6
<p>Results of scanning electron microscopy (SEM) 50× of (<b>a</b>) undoped ZnO film, and ZnO:Ta-doped films grown with a pellet weight of (<b>b</b>) 50 mg, (<b>c</b>) 100 mg, (<b>d</b>) 200 mg, (<b>e</b>) 250 mg, and (<b>f</b>) 300 mg of Ta<sub>2</sub>O<sub>5</sub>.</p> "> Figure 7
<p>Zoom of 500× on the film of (<b>a</b>) ZnO, and (<b>b</b>) ZnO:Ta doped with 300 mg of Ta<sub>2</sub>O<sub>5</sub> on pellet.</p> "> Figure 8
<p>Roughness dependence in films obtained according to the amount of Ta in the source pellet.</p> "> Figure 9
<p>High-resolution field emission (FE) SEM measurements for (<b>a.1</b>–<b>a.3</b>) undoped ZnO film, and (<b>b.1</b>–<b>b.3</b>) ZnO:Ta-doped film in different zones of scanning, grown with 300 mg of Ta<sub>2</sub>O<sub>5</sub> in the pellet.</p> "> Figure 10
<p>X-ray spectrometry (EDS) analysis for (<b>a</b>) undoped ZnO film, and (<b>b</b>) ZnO:Ta-doped film grown with 300 mg of Ta<sub>2</sub>O<sub>5</sub> in the pellet source.</p> "> Figure 11
<p>FESEM measurements on the shell from (<b>a</b>) undoped ZnO film, and (<b>b</b>) ZnO:Ta-doped film obtained with 300 mg of Ta<sub>2</sub>O<sub>5</sub> in the pellet.</p> "> Figure 12
<p>Photoluminescence spectra of (<b>a</b>) ZnO film and ZnO:Ta-doped films with (<b>b</b>) 10% Ta<sub>2</sub>O<sub>5</sub>, (<b>c</b>) 20% Ta<sub>2</sub>O<sub>5</sub>, (<b>d</b>) 40% Ta<sub>2</sub>O<sub>5</sub>, (<b>e</b>) 50% Ta<sub>2</sub>O<sub>5</sub>, and (<b>f</b>) 60% Ta<sub>2</sub>O<sub>5</sub> in the pellet source.</p> "> Figure 13
<p>Electrical characterization of ZnO- and ZnO:Ta-doped films: (<b>a</b>) carrier concentration and mobility, and (<b>b</b>) resistivity.</p> "> Figure 14
<p>A model of conductivity through the crystal in the film. Two possible paths for conduction: intergrain (R<sub>1</sub>) and through the volume of the grains (R<sub>2</sub>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Characterization by XRD
3.2. Raman Measurements
3.3. SEM and EDS Studies
3.4. Photoluminescence
3.5. Hall Measurements
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Versteegh, M.A.M.; Vanmaekelbergh, D.; Dijkhuis, J.I. Room-Temperature Laser Emission of ZnO Nanowires Explained by Many-Body Theory. Phys. Rev. Lett. 2012, 108, 157402. [Google Scholar] [CrossRef] [PubMed]
- Willander, M.; Nur, O.; Zhao, Q.X.; Yang, L.L.; Lorenz, M.; Cao, B.Q.; Ziga Pérez, J.; Czekalla, C.; Zimmermann, G.; Grundmann, M.; et al. Zinc oxide nanorod based photonic devices: Recent progress in growth, lightemitting diodes and lasers. Nanotechnology 2009, 20, 332001. [Google Scholar] [CrossRef] [PubMed]
- Willander, M.; Nur, O.; Sadaf, J.R.; Qadir, M.I.; Zaman, S.; Zainelabdin, A.; Bano, N.; Hussain, I. Luminescence from zinc oxide nanostructures and polymers and their hybrid devices. Materials 2010, 3, 2643–2667. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, H.; Zhao, D.; Li, B.; Zhang, Z.; Jiang, M.; Shen, D. High responsivity ZnO nanowires based UV detector fabricated by the dielectrophoresis method. Sens. Actuators B Chem. 2012, 166–167, 12–16. [Google Scholar] [CrossRef]
- Könenkamp, R.; Nadarajah, A.; Word, R.C.; Meiss, J.; Engelhardt, R. ZnO nanowires for LED and field-emission displays. J. Soc. Inf. Disp. 2008, 16, 609–613. [Google Scholar] [CrossRef]
- Zheng, K.; Shen, H.; Li, J.; Sun, D.; Chen, G.; Hou, K.; Li, C.; Lei, W. The fabrication and properties of field emission display based on ZnO tetrapod-liked nanostructure. Vacuum 2008, 83, 261–264. [Google Scholar] [CrossRef]
- Seelig, E.W.; Tang, B.; Yamilov, A.; Cao, H.; Chang, R.P.H. Self-assembeled 3D photonic crystals from ZnO colloidal spheres. Mater. Chem. Phys. 2002, 9712, 1–7. [Google Scholar]
- Pietruszka, R.; Witkowski, B.S.; Gieraltowska, S.; Caban, P.; Wachnicki, L.; Zielony, E.; Gwozdz, K.; Bieganski, P.; Placzek-Popko, E.; Godlewski, M. New efficient solar cell structures based on zinc oxide nanorods. Sol. Energy Mater. Sol. Cells 2015, 143, 99–104. [Google Scholar] [CrossRef]
- Vittal, R.; Ho, K.C. Zinc oxide based dye-sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2017, 70, 920–935. [Google Scholar] [CrossRef]
- Manthina, V.; Agrios, A.G. Band edge engineering of composite photoanodes for dye-sensitized solar cells. Electrochim. Acta 2015, 169, 416–423. [Google Scholar] [CrossRef]
- Yazdi, M.A.P.; Martin, N.; Monsifrot, E.; Briois, P.; Billard, A. ZnO nano-tree active layer as heavy hydrocarbon sensor: From material synthesis to electrical and gas sensing properties. Thin Solid Films 2015, 596, 128–134. [Google Scholar] [CrossRef]
- Chaudhary, S.; Umar, A.; Bhasin, K.K.; Baskoutas, S. Chemical sensing applications of ZnO nanomaterials. Materials 2018, 11, 287. [Google Scholar] [CrossRef] [PubMed]
- Manthina, V.; Agrios, A.G. Single-pot ZnO nanostructure synthesis by chemical bath deposition and their applications. Nano-Struct. Nano-Objects 2016, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.F.; Wen, H.C.; Jian, S.R.; Lai, Y.S.; Wu, S.; Chen, R.S. Characteristics of ZnO thin films prepared by radio frequency magnetron sputtering. Microelectron. Reliab. 2008, 48, 389–394. [Google Scholar] [CrossRef]
- Villanueva, Y.Y.; Liu, D.R.; Cheng, P.T. Pulsed laser deposition of zinc oxide. Thin Solid Films 2006, 501, 366–369. [Google Scholar] [CrossRef]
- Lehraki, N.; Aida, M.S.; Abed, S.; Attaf, N.; Attaf, A.; Poulain, M. ZnO thin films deposition by spray pyrolysis: Influence of precursor solution properties. Curr. Appl. Phys. 2012, 12, 1283–1287. [Google Scholar] [CrossRef]
- Wallace, R.; Brown, A.P.; Brydson, R.; Wegner, K.; Milne, S.J. Synthesis of ZnO nanoparticles by flame spray pyrolysis and characterisation protocol. J. Mater. Sci. 2013, 48, 6393–6403. [Google Scholar] [CrossRef] [Green Version]
- Ohmagari, S.; Matsumoto, T.; Umezawa, H.; Mokuno, Y. Ohmic contact formation to heavily boron-doped p+ diamond prepared by hot-filament chemical vapor deposition. MRS Adv. 2016, 1, 3489–3495. [Google Scholar] [CrossRef]
- Deshpande, S.; Dupuie, J.; Gulari, E. Filament-activated chemical vapour deposition of nitride thin films. Adv. Mater. Opt. Electron. 1996, 6, 135–146. [Google Scholar] [CrossRef]
- Deshpande, S.V.; Dupuie, J.L.; Gualari, E. Hot filament assisted deposition of silicon nitride thin films. Appl. Phys. Lett. 1992, 61, 1420–1422. [Google Scholar] [CrossRef]
- Silva-Andrade, F.; Chávez, F.; Gómez, E. Epitaxial GaAs growth using atomic hydrogen as the reactant. J. Appl. Phys. 1994, 76, 1946–1947. [Google Scholar] [CrossRef]
- López, J.A.L.; López, J.C.; Valerdi, D.E.V.; Salgado, G.G.; Díaz-Becerril, T.; Pedraza, A.P.; Gracia, F.J.F. Morphological, compositional, structural, and optical properties of Si-nc embedded in SiOx films. Nanoscale Res. Lett. 2012, 7, 604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, H.Y.; Lo, S.Y.; Wuu, D.S.; Wu, B.R.; Ou, S.L.; Hsieh, H.Y.; Horng, R.H. Hot-wire chemical vapor deposition and characterization of p-type nanocrystalline Si films for thin film photovoltaic applications. Thin Solid Films 2012, 520, 5200–5205. [Google Scholar] [CrossRef]
- Mendoza, F.; Limbu, T.B.; Weiner, B.R.; Morell, G. Large-area bilayer graphene synthesis in the hot filament chemical vapor deposition reactor. Diam. Relat. Mater. 2015, 51, 34–38. [Google Scholar] [CrossRef]
- Wang, B.B.; Zhu, M.K.; Ostrikov, K.; Shao, R.W.; Zheng, K. Structure and photoluminescence of molybdenum selenide nanomaterials grown by hot filament chemical vapor deposition. J. Alloys Compd. 2015, 647, 734–739. [Google Scholar] [CrossRef]
- Mortazavi, S.H.; Ghoranneviss, M.; Dadashbaba, M.; Alipour, R. Synthesis and investigation of silicon carbide nanowires by HFCVD method. Bull. Mater. Sci. 2016, 39, 953–960. [Google Scholar] [CrossRef]
- Ramos, J.R.; Morales, C.; García, G.; Díaz, T.; Rosendo, E.; Santoyo, J.; Oliva, A.I.; Galeazzi, R. Optical and structural analysis of ZnS core-shell type nanowires. J. Alloys Compd. 2018, 736, 93–98. [Google Scholar] [CrossRef]
- Janotti, A.; Van De Walle, C.G. Native point defects in ZnO. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 165202. [Google Scholar] [CrossRef]
- Jayakumar, O.D.; Sudarsan, V.; Sudakar, C.; Naik, R.; Vatsa, R.K.; Tyagi, A.K. Green emission from ZnO nanorods: Role of defects and morphology. Scr. Mater. 2010, 62, 662–665. [Google Scholar] [CrossRef]
- Gahlaut, U.P.S.; Kumar, V.; Pandey, R.K.; Goswami, Y.C. Highly luminescent ultra small Cu doped ZnO nanostructures grown by ultrasonicated sol-gel route. Optik 2016, 127, 4292–4295. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, N.; Chen, Y.; Yang, C.; Liu, W.; Su, J.; Li, L.; Gao, Y. Multicolour electroluminescence from light emitting diode based on ZnO:Cu/p-GaN heterojunction at positive and reverse bias voltage. RSC Adv. 2015, 5, 104386–104391. [Google Scholar] [CrossRef]
- Muthukumaran, S.; Gopalakrishnan, R. Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt. Mater. 2012, 34, 1946–1953. [Google Scholar] [CrossRef]
- Klingshirn, C. ZnO: From basics towards applications. Phys. Status Solidi Basic Res. 2007, 244, 3027–3073. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doǧan, S.; Avrutin, V.; Cho, S.J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 1–103. [Google Scholar] [CrossRef]
- Chitra, M.; Uthayarani, K.; Rajasekaran, N.; Girija, E.K. Preparation and characterisation of Al doped ZnO nanopowders. Phys. Procedia 2013, 49, 177–182. [Google Scholar] [CrossRef]
- Liu, M.; Kitai, A.H.; Mascher, P. Point defects and luminescence centers in zinc oxide and zinc oxide doped with manganese. J. Lumin. 1992, 54, 35–42. [Google Scholar] [CrossRef]
- López, R.; Díaz, T.; García, G.; Rosendo, E.; Galeazzi, R.; Coyopol, A.; Juárez, H.; Pacio, M.; Morales, F.; Oliva, A.I. Fast formation of surface Oxidized Zn Nanorods and urchin-like microclusters. Adv. Mater. Sci. Eng. 2014, 2014. [Google Scholar] [CrossRef]
- Richard, D.; Romero, M.; Faccio, R. Experimental and theoretical study on the structural, electrical and optical properties of tantalum-doped ZnO nanoparticles prepared via sol-gel acetate route. Ceram. Int. 2018, 44, 703–711. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, C.; Cai, R.; Wang, Y.; Zhou, G. Temperature-dependent growth mechanism and microstructure of ZnO nanostructures grown from the thermal oxidation of zinc. J. Cryst. Growth 2014, 390, 101–108. [Google Scholar] [CrossRef]
- Cheng, Y.; Cao, L.; He, G.; Yao, G.; Song, X.; Sun, Z. Preparation, microstructure and photoelectrical properties of Tantalum-doped zinc oxide transparent conducting films. J. Alloys Compd. 2014, 608, 85–89. [Google Scholar] [CrossRef]
- Krishnan, R.R.; Vinodkumar, R.; Rajan, G.; Gopchandran, K.G.; Mahadevan Pillai, V.P. Structural, optical, and morphological properties of laser ablated ZnO doped Ta2O5 films. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2010, 174, 150–158. [Google Scholar] [CrossRef]
- Bang, K.; Son, G.C.; Son, M.; Jun, J.H.; An, H.; Baik, K.H.; Myoung, J.M.; Ham, M.H. Effects of Li doping on the structural and electrical properties of solution-processed ZnO films for high-performance thin-film transistors. J. Alloys Compd. 2018, 739, 41–46. [Google Scholar] [CrossRef]
- Khan, A. Raman Spectroscopic Study of the ZnO Nanostructures. J. Pak. Mater. Soc. 2010, 4, 5–9. [Google Scholar]
- Schumm, M. ZnO-Based Semiconductors Studied by Raman Spectroscopy: Semimagnetic Alloying, Doping, and Nanostructures. Ph.D. Thesis, Julius–Maximilians University, Würzburg, Germany, July 2008. [Google Scholar]
- Soosen, S.M.; Koshy, J.; Chandran, A.; George, K.C. Optical phonon confinement in ZnO nanorods and nanotubes. Indian J. Pure Appl. Phys. 2010, 48, 703–708. [Google Scholar]
- Zhang, R.; Yin, P.G.; Wang, N.; Guo, L. Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci. 2009, 11, 865–869. [Google Scholar] [CrossRef]
- Tzolov, M.; Tzenov, N.; Dimova-Malinovska, D.; Kalitzova, M.; Pizzuto, C.; Vitali, G.; Zollo, G.; Ivanov, I. Vibrational properties and structure of undoped and Al-doped ZnO films deposited by RF magnetron sputtering. Thin Solid Films 2000, 379, 28–36. [Google Scholar] [CrossRef]
- Goff, A.H.-L.; Joiret, S.; Saïdani, B.; Wiart, R. In-situ Raman spectroscopy applied to the study of the deposition and passivation of zinc in alkaline electrolytes. J. Electroanal. Chem. 1989, 263, 127–135. [Google Scholar] [CrossRef]
- Marchebois, H.; Joiret, S.; Savall, C.; Bernard, J.; Touzain, S. Characterization of zinc-rich powder coatings by EIS and Raman spectroscopy. Surf. Coat. Technol. 2002, 157, 151–161. [Google Scholar] [CrossRef]
- Janotti, A.; Van De Walle, C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72, 126501. [Google Scholar] [CrossRef]
- Van De Walle, C.G.; Neugebauer, J. First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 2004, 95, 3851–3879. [Google Scholar] [CrossRef]
- López, R.; García, G.; Díaz, T.; Coyopol, A.; Rosendo, E.; Galeazzi, R.; Juárez, H.; Pacio, M. Low temperature growth of Zn-ZnO microspheres by atomic hydrogen assisted-HFCVD. IOP Conf. Ser. Mater. Sci. Eng. 2013, 45, 012016. [Google Scholar] [CrossRef] [Green Version]
- López, R.; Díaz, T.; García, G.; Galeazzi, R.; Rosendo, E.; Coyopol, A.; Pacio, M.; Juárez, H.; Oliva, A.I. Structural properties of Zn-ZnO core-shell microspheres grown by hot-filament CVD technique. J. Nanomater. 2012, 2012, 865321. [Google Scholar] [CrossRef]
- Lin, J.H.; Patil, R.A.; Devan, R.S.; Liu, Z.A.; Wang, Y.P.; Ho, C.H.; Liou, Y.; Ma, Y.R. Photoluminescence mechanisms of metallic Zn nanospheres, semiconducting ZnO nanoballoons, and metal-semiconductor Zn/ZnO nanospheres. Sci. Rep. 2014, 4, 6967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.X.; Li, Y.F.; Zhou, J.; Li, L.Y.; Deng, S.Z.; Xu, N.S.; Chen, J. Large-scale synthesis of bicrystalline ZnO nanowire arrays by thermal oxidation of zinc film: Growth mechanism and high-performance field emission. Cryst. Growth Des. 2013, 13, 2897–2905. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C.; Li, M.; Li, H.; Xu, S.; Wu, X.; Yang, B. Microstructural and optical properties of Ta-doped ZnO films prepared by radio frequency magnetron sputtering. Ceram. Int. 2016, 42, 10847–10853. [Google Scholar] [CrossRef]
- Ravichandran, K.; Subha, K.; Dineshbabu, N.; Manivasaham, A. Enhancing the electrical parameters of ZnO films deposited using a low-cost chemical spray technique through Ta doping. J. Alloys Compd. 2016, 656, 332–338. [Google Scholar] [CrossRef]
- Subha, K.; Ravichandran, K.; Sriram, S. Combined influence of fluorine doping and vacuum annealing on the electrical properties of ZnO:Ta films. Appl. Surf. Sci. 2017, 409, 413–425. [Google Scholar] [CrossRef]
- Li, G.; Kawi, S. High-surface-area SnO: A novel semiconductor-oxide. Mater. Lett. 1998, 34, 99–102. [Google Scholar] [CrossRef]
- Bain, L.E.; Collazo, R.; Hsu, S.H.; Latham, N.P.; Manfra, M.J.; Ivanisevic, A. Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors. Acta Biomater. 2014, 10, 2455–2462. [Google Scholar] [CrossRef] [PubMed]
- Soni, U.; Sapra, S. The Importance of Surface in Core—Shell Semiconductor Nanocrystals. J. Phys. Chem. 2010, 114, 22514–22518. [Google Scholar] [CrossRef]
- Rodnyi, P.A.; Khodyuk, I.V. Optical and luminescence properties of zinc oxide (Review). Opt. Spectrosc. 2011, 111, 776–785. [Google Scholar] [CrossRef] [Green Version]
- Studenikin, S.A.; Golego, N.; Cocivera, M. Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys. 1998, 84, 2287–2294. [Google Scholar] [CrossRef]
- Vanheusden, K.; Warren, W.L.; Seager, C.H.; Tallant, D.R.; Voigt, J.A.; Gnade, B.E. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 1996, 79, 7983–7990. [Google Scholar] [CrossRef]
Reference Name | d (Å) | (hkl) | a (Å) | c (Å) | Average Crystallite Size (nm) |
---|---|---|---|---|---|
ZnO | 2.5869 | (002) | 3.2406 | 5.1738 | 224 |
ZnO 50 mg Ta | 2.4653 | (101) | 3.2361 | 5.1841 | 155 |
ZnO 100 mg Ta | 1.3542 | (201) | 3.2401 | 5.1806 | 142 |
ZnO 200 mg Ta | 1.3561 | (201) | 3.2448 | 5.1831 | 134 |
ZnO 250 mg Ta | 1.3546 | (201) | 3.2407 | 5.1874 | 129 |
ZnO 300 mg Ta | 1.3551 | (201) | 3.2419 | 5.1895 | 122 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, V.; Díaz-Becerril, T.; Reyes-Cervantes, E.; García-Salgado, G.; Galeazzi, R.; Morales, C.; Rosendo, E.; Coyopol, A.; Romano, R.; Nieto-Caballero, F.G. Highly Visible Photoluminescence from Ta-Doped Structures of ZnO Films Grown by HFCVD. Crystals 2018, 8, 395. https://doi.org/10.3390/cryst8100395
Herrera V, Díaz-Becerril T, Reyes-Cervantes E, García-Salgado G, Galeazzi R, Morales C, Rosendo E, Coyopol A, Romano R, Nieto-Caballero FG. Highly Visible Photoluminescence from Ta-Doped Structures of ZnO Films Grown by HFCVD. Crystals. 2018; 8(10):395. https://doi.org/10.3390/cryst8100395
Chicago/Turabian StyleHerrera, Víctor, Tomás Díaz-Becerril, Eric Reyes-Cervantes, Godofredo García-Salgado, Reina Galeazzi, Crisóforo Morales, Enrique Rosendo, Antonio Coyopol, Román Romano, and Fabiola G. Nieto-Caballero. 2018. "Highly Visible Photoluminescence from Ta-Doped Structures of ZnO Films Grown by HFCVD" Crystals 8, no. 10: 395. https://doi.org/10.3390/cryst8100395
APA StyleHerrera, V., Díaz-Becerril, T., Reyes-Cervantes, E., García-Salgado, G., Galeazzi, R., Morales, C., Rosendo, E., Coyopol, A., Romano, R., & Nieto-Caballero, F. G. (2018). Highly Visible Photoluminescence from Ta-Doped Structures of ZnO Films Grown by HFCVD. Crystals, 8(10), 395. https://doi.org/10.3390/cryst8100395