Preparation of Hierarchical Porous ZIF-67 and Its Application in Zinc Battery Separator
<p>(<b>a</b>) The structural diagram of ZIF-67; (<b>b</b>) PXRD patterns of C-ZIF-67 and H-ZIF-67 compared to simulated ZIF-67 (from deposited cif file 1429244 [<a href="#B32-chemistry-06-00080" class="html-bibr">32</a>]); SEM images of (<b>c</b>) C-ZIF-67; and (<b>d</b>) H-ZIF-67 (the magnification of the SEM images is 1 × 10<sup>5</sup>).</p> "> Figure 2
<p>(<b>a</b>) N<sub>2</sub> adsorption/desorption isotherms of C-ZIF-67 and H-ZIF-67 (the adsorption-filled symbols are solid, the desorption empty symbols are hollow). (<b>b</b>) DFT pore size distribution curves of C-ZIF-67 and H-ZIF-67 (density functional theory, DFT). (<b>c</b>) Time-dependent adsorption curves of C-ZIF-67 and H-ZIF-67 for MO. (<b>d</b>) Uptake of MO by C-ZIF-67 and H-ZIF-67.</p> "> Figure 3
<p>SEM images of CNF separator (<b>a</b>,<b>b</b>) (the magnification of SEM images is 2 × 10<sup>4</sup>); SEM images of H-ZIF-67/CNF separator (<b>c</b>,<b>d</b>) (the magnification of SEM image C is 2 × 10<sup>4</sup>, and the magnification of SEM image D is 1 × 10<sup>4</sup>); (<b>e</b>) CNF separator contact angle diagram; (<b>f</b>) H-ZIF-67/CNF separator contact angle diagram; (<b>g</b>) PXRD patterns of H-ZIF-67 and H-ZIF-67/CNF separator; (<b>h</b>) stress–strain curves of CNF separator and H-ZIF-67/CNF separator; (<b>i</b>) porosity of CNF separator, C-ZIF-67/CNF separator and H-ZIF-67/CNF separator; (<b>j</b>) electrolyte adsorption graphs of CNF separator, C-ZIF-67/CNF separator and H-ZIF-67/CNF separator.</p> "> Figure 4
<p>(<b>a</b>) Nyquist plot of SS//SS cell with CNF separator and H-ZIF-67/CNF separator; (<b>b</b>) ion conductivity diagram of CNF cell and H-ZIF-67/CNF cell with Zinc Symmetric Battery separator; (<b>c</b>) Nyquist plot of Zn//Zn cell with CNF separator and H-ZIF-67/CNF separator.</p> "> Figure 5
<p>(<b>a</b>) Voltage–time curves of Zn//Zn symmetric cells with CNF separator and H-ZIF-67/CNF separator at different current densities; (<b>b</b>) voltage–time curves of Zn//Zn symmetric cells with CNF separator and H-ZIF-67/CNF separator at 2 mA·cm<sup>−2</sup> and 2 mAh·cm<sup>−2</sup>; (<b>c</b>) voltage–time curves of Zn//Zn symmetric cells with CNF separator and H-ZIF-67/CNF separator at 1 mA·cm<sup>−2</sup> and 1 mAh·cm<sup>−2</sup>.</p> ">
Abstract
:1. Introduction
2. Experimental Part
2.1. Materials
2.2. Material Preparation
2.2.1. Preparation of ZIF-67
2.2.2. Preparation of H-ZIF-67/CNF Membrane
2.3. Characterization Methods
2.3.1. Characterization of Material
2.3.2. Battery Testing
- L = thickness of the diaphragm sample (m);
- A = area of the stainless-steel sheet (cm2);
- R = impedance value of the diaphragm (Ω).
2.4. Study on the Storage and Transport Rate of Cationic Dyes
3. Results and Discussion
3.1. Structural Control and Performance Study of ZIF-67
3.2. Application of H-ZIF-67 in the Separator of Zinc-Ion Batteries
3.2.1. Characterization of H-ZIF-67/CNF Zinc-Ion Battery Separator
3.2.2. Electrochemical Performance Analysis
3.2.3. Electrochemical Performance Testing of Zinc Symmetric Batteries
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bakar, B.; Dik, G.; Ulu, A.; Ateş, B. Immobilization of Xylanase into Zeolitic Imidazolate Framework-67 (ZIF-67) and Manganese-Doped ZIF-67 (Mn/ZIF-67): A Comparison Study. Top. Catal. 2024, 67, 698–713. [Google Scholar] [CrossRef]
- Park, H.; Amaranatha Reddy, D.; Kim, Y.; Ma, R.; Choi, J.; Kim, T.K.; Lee, K.-S. Zeolitic imidazolate framework-67 (ZIF-67) rhombic dodecahedrons as full-spectrum light harvesting photocatalyst for environmental remediation. Solid State Sci. 2016, 62, 82–89. [Google Scholar] [CrossRef]
- Zhong, G.; Liu, D.; Zhang, J. The application of ZIF-67 and its derivatives: Adsorption, separation, electrochemistry and catalysts. J. Mater. Chem. A 2018, 6, 1887–1899. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, N.; Liu, M. Adsorption desulfurization over porous carbons derived from ZIF-67 and AC. J. Solid State Chem. 2023, 322, 123985. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Tsao, P.-K.; Rinawati, M.; Chen, K.-J.; Chen, K.-Y.; Chang, C.Y.; Yeh, M.-H. Designing ZIF-67 derived NiCo layered double hydroxides with 3D hierarchical structure for Enzyme-free electrochemical lactate monitoring in human sweat. Chem. Eng. J. 2022, 427, 131687. [Google Scholar] [CrossRef]
- Gong, H.; Sun, G.; Shi, W.; Li, D.; Zheng, X.; Shi, H.; Liang, X.; Yang, R.; Yuan, C. Nano-Au-decorated hierarchical porous cobalt sulfide derived from ZIF-67 toward optimized oxygen evolution catalysis: Important roles of microstructures and electronic modulation. Carbon Energy 2024, 6, e432. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhi, P.; Zhang, J.; Duan, S.; Yao, X.; Liu, S.; Sun, Z.; Jun, S.C.; Zhao, N.; Dai, L.; et al. Engineering Covalent Organic Frameworks Toward Advanced Zinc-Based Batteries. Adv. Mater. 2024, 36, 2313152. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Sun, F.; Qin, L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 2012, 82, 220–223. [Google Scholar] [CrossRef]
- Ethiraj, J.; Palla, S.; Reinsch, H. Insights into high pressure gas adsorption properties of ZIF-67: Experimental and theoretical studies. Microporous Mesoporous Mater. 2020, 294, 109867. [Google Scholar] [CrossRef]
- Campos, R.D.; Menezes de Oliveira, A.L.; Rostas, A.M.; Kuncser, A.C.; Negrila, C.C.; Galca, A.-C.; Félix, C.; Castellano, L.; da Silva, F.F.; dos Santos, I.M.G. TiO2/ZIF-67 nanocomposites synthesized by the microwave-assisted solvothermal method: A correlation between the synthesis conditions and antimicrobial properties. New J. Chem. 2023, 47, 2177–2188. [Google Scholar] [CrossRef]
- Zhao, H.; Qu, Z.-R.; Ye, H.-Y.; Xiong, R.-G. In situ hydrothermal synthesis of tetrazole coordination polymers with interesting physical properties. Chem. Soc. Rev. 2008, 37, 84–100. [Google Scholar] [CrossRef] [PubMed]
- Qiang, T.; Wang, S.; Wang, Z.; Ren, L. Recyclable 3D konjac glucomannan/graphene oxide aerogel loaded with ZIF-67 for comprehensive adsorption of methylene blue and methyl orange. J. Ind. Eng. Chem. 2022, 116, 371–384. [Google Scholar] [CrossRef]
- Nazir, M.A.; Khan, N.A.; Cheng, C.; Shah, S.S.A.; Najam, T.; Arshad, M.; Sharif, A.; Akhtar, S.; Rehman, A.U. Surface induced growth of ZIF-67 at Co-layered double hydroxide: Removal of methylene blue and methyl orange from water. Appl. Clay Sci. 2020, 190, 105564. [Google Scholar] [CrossRef]
- Shi, W.; Song, S.; Zhang, H. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem. Soc. Rev. 2013, 42, 5714–5743. [Google Scholar] [CrossRef]
- Al Obeidli, A.; Ben Salah, H.; Al Murisi, M.; Sabouni, R. Recent advancements in MOFs synthesis and their green applications. Int. J. Hydrogen Energy 2022, 47, 2561–2593. [Google Scholar] [CrossRef]
- Zhu, C.; Li, P.; Xu, G.; Cheng, H.; Gao, G. Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries. Coord. Chem. Rev. 2023, 485, 215142. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, J.; Han, L.; Wang, Z.; Wang, H.; Zhao, Q.; Liu, J.; Pan, F. A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy 2019, 56, 92–99. [Google Scholar] [CrossRef]
- Liang, Y.; Dong, H.; Aurbach, D.; Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 2020, 5, 646–656. [Google Scholar] [CrossRef]
- Haregewoin, A.M.; Wotango, A.S.; Hwang, B.-J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives. Energy Environ. Sci. 2016, 9, 1955–1988. [Google Scholar] [CrossRef]
- Al-Amin, M.; Islam, S.; Shibly, S.U.; Iffat, S. Comparative Review on the Aqueous Zinc-Ion Batteries (AZIBs) and Flexible Zinc-Ion Batteries (FZIBs). Nanomaterials 2022, 12, 3997. [Google Scholar] [CrossRef]
- Li, B.; Zeng, Y.; Zhang, W.; Lu, B.; Yang, Q.; Zhou, J.; He, Z. Separator designs for aqueous zinc-ion batteries. Sci. Bull. 2024, 69, 688–703. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jia, S.; Cheng, Z.; Zhang, C. Improved Strategies for Separators in Zinc-Ion Batteries. ChemSusChem 2023, 16, e202202330. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zhao, C.; Li, X. Enhanced electrolyte retention capability of separator for lithium-ion battery constructed by decorating ZIF-67 on bacterial cellulose nanofiber. Cellulose 2021, 28, 3097–3112. [Google Scholar] [CrossRef]
- Li, D.; Tian, X.; Wang, Z.; Guan, Z.; Li, X.; Qiao, H.; Ke, H.; Luo, L.; Wei, Q. Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant. Chem. Eng. J. 2020, 383, 123127. [Google Scholar] [CrossRef]
- Chen, P.; Shen, J.; Wang, T.; Dai, M.; Si, C.; Xie, J.; Li, M.; Cong, X.; Sun, X. Zeolitic imidazolate framework-67 based separator for enhanced high thermal stability of lithium ion battery. J. Power Sources 2018, 400, 325–332. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, P.; Feng, Y.; Wang, Z.; Li, X.; Yao, J. Rational design of interlaced Co9S8/carbon composites from ZIF-67/cellulose nanofibers for enhanced lithium storage. J. Alloys Compd. 2020, 818, 152911. [Google Scholar] [CrossRef]
- Tu, W.-B.; Liang, S.; Song, L.-N.; Wang, X.-X.; Ji, G.-J.; Xu, J.-J. Nanoengineered Functional Cellulose Ionic Conductor Toward High- Performance All-Solid-State Zinc-Ion Battery. Adv. Funct. Mater. 2024, 34, 2316137. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Y.; Zhang, Y.; Deng, J.; Chen, N.; Xie, S.; Ma, Y.; Wang, Z. Designing Anti-Swelling Nanocellulose Separators with Stable and Fast Ion Transport Channels for Efficient Aqueous Zinc-Ion Batteries. Adv. Funct. Mater. 2023, 33, 2304280. [Google Scholar] [CrossRef]
- Wang, L.; Xu, S.; Song, Z.; Jiang, W.; Zhang, S.; Jian, X.; Hu, F. Promoting uniform lithium deposition with Janus gel polymer electrolytes enabling stable lithium metal batteries. InfoMat 2024, 6, e12551. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, C.; Zhang, C.; Duan, M.; Wang, H.; Fan, H.; Li, Y.; Shangguan, J.; Lin, J. Effect of hierarchical porous MOF-199 regulated by PVP on their ambient desulfurization performance. Fuel 2022, 319, 123845. [Google Scholar] [CrossRef]
- Zhang, Y.-J. Entropy and ionic conductivity. Phys. A Stat. Mech. Its Appl. 2012, 391, 4470–4475. [Google Scholar] [CrossRef]
- Kwon, H.T.; Jeong, H.-K.; Lee, A.S.; An, H.S.; Lee, J.S. Heteroepitaxially Grown Zeolitic Imidazolate Framework Membranes with Unprecedented Propylene/Propane Separation Performances. J. Am. Chem. Soc. 2015, 137, 12304–12311. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Li, Q.; Liu, Q.; Zeng, Y.; Li, J.; Huang, W.; Wang, F.; Zhong, S.; Yan, D. Low-cost separator with dust-free fabric composite cellulose acetate toward stable dendrite-free aqueous zinc-ion batteries. Chem. Eng. J. 2024, 479, 147846. [Google Scholar] [CrossRef]
- Wu, F.; Du, F.; Ruan, P.; Cai, G.; Chen, Y.; Yin, X.; Ma, L.; Yin, R.; Shi, W.; Liu, W.; et al. Regulating zinc deposition behaviors by using a functional PANI modification layer on a separator for high performance aqueous zinc-ion batteries. J. Mater. Chem. A 2023, 11, 11254–11263. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Li, X.; Fan, L.; Shuai, Y.; Zhang, N. Loosening Zinc Ions from Separator Boosts Stable Zn Plating/Striping Behavior for Aqueous Zinc Ion Batteries. Adv. Energy Mater. 2023, 13, 2302126. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, Y.; Qi, X.; Wang, R.; Zhu, Z.; Yan, C.; Jiao, X.; Li, S.; Qie, L.; Li, J.; et al. Stretchable separator/current collector composite for superior battery safety. Energy Environ. Sci. 2022, 15, 5313–5323. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H.; Bak, C.; Hong, Y.; Joung, D.; Ko, J.B.; Lee, Y.M.; Kim, C. Enhancing Hydrophilicity of Thick Electrodes for High Energy Density Aqueous Batteries. Nano-Micro Lett. 2023, 15, 97. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Yu, J.; Xiao, P.; Nie, S.; Peng, S.; Chen, J.; Luo, F.; Janiak, C.; Chen, Y. Preparation of Hierarchical Porous ZIF-67 and Its Application in Zinc Battery Separator. Chemistry 2024, 6, 1363-1373. https://doi.org/10.3390/chemistry6060080
Zhao T, Yu J, Xiao P, Nie S, Peng S, Chen J, Luo F, Janiak C, Chen Y. Preparation of Hierarchical Porous ZIF-67 and Its Application in Zinc Battery Separator. Chemistry. 2024; 6(6):1363-1373. https://doi.org/10.3390/chemistry6060080
Chicago/Turabian StyleZhao, Tian, Jiangrong Yu, Pengcheng Xiao, Saiqun Nie, Shilin Peng, Jiayao Chen, Fuli Luo, Christoph Janiak, and Yi Chen. 2024. "Preparation of Hierarchical Porous ZIF-67 and Its Application in Zinc Battery Separator" Chemistry 6, no. 6: 1363-1373. https://doi.org/10.3390/chemistry6060080
APA StyleZhao, T., Yu, J., Xiao, P., Nie, S., Peng, S., Chen, J., Luo, F., Janiak, C., & Chen, Y. (2024). Preparation of Hierarchical Porous ZIF-67 and Its Application in Zinc Battery Separator. Chemistry, 6(6), 1363-1373. https://doi.org/10.3390/chemistry6060080