LC-ESI-MS and GC-MS Profiling, Chemical Composition, and Cytotoxic Activity of Endophytic Fungus Pleosporales sp. Derived from Artemisia annua
"> Figure 1
<p>Structures of the identified metabolites (<b>1</b>–<b>12</b>) in the EtOAc extract of <span class="html-italic">Pleosporales</span> sp. by LC-ESI-MS.</p> "> Figure 2
<p>Structures of the identified compounds (<b>13</b>–<b>21</b>) in EtOAc and MeOH extracts from <span class="html-italic">Pleosporales</span> sp. discerned by GC-MS.</p> "> Figure 3
<p>Structures of the isolated compounds (<b>13</b>, <b>16</b>, <b>18</b>, <b>20</b>–<b>27</b>) from <span class="html-italic">Pleosporales</span> sp.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Isolation of Endophytic Fungi
2.3. Molecular Identification and Phylogenetic Analysis
2.4. Fermentation in Liquid Medium
2.5. LC–HR–ESI-MS
2.6. GC-MS Analysis
2.7. Extraction and Isolation of Secondary Metabolites
2.8. MTT Cytotoxicity Assay
3. Results and Discussion
3.1. LC-ESI-MS Profiling of Pleosporales sp.
3.2. GC-MS Profiling of Pleosporales sp.
3.3. Isolation of Secondary Metabolites
3.4. Cytotoxic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selim, K.A.; El-Beih, A.A.; AbdEl-Rahman, T.M.; El-Diwany, A.I. Biology of Endophytic Fungi. Curr. Res. Environm. Appl. Mycol. 2012, 2, 31–82. [Google Scholar] [CrossRef]
- Bérdy, J. Bioactive Microbial Metabolites. J. Antibiot 2005, 58, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Li, G.; Lou, H.-X. Structural Diversity and Biological Activities of Novel Secondary Metabolites from Endophytes. Molecules 2018, 23, 646. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lou, H.-X. Strategies to Diversify Natural Products for Drug Discovery. Med. Res. Rev. 2018, 38, 1255–1294. [Google Scholar] [CrossRef]
- Zhang, H.W.; Song, Y.C.; Tan, R.X. Biology and chemistry of endophytes. Nat. Prod. Rep. 2006, 23, 753–771. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Meng, Z.H.; Wang, P.; Luo, D.Q.; Zhu, H.J. Dipleosporalones A and B, dimeric azaphilones from a marine-derived Pleosporales sp. fungus. J. Nat. Prod. 2020, 83, 1283–1287. [Google Scholar] [CrossRef]
- Cao, F.; Meng, Z.H.; Mu, X.; Yue, Y.F.; Zhu, H.J. Absolute configuration of bioactive azaphilones from the marine-derived fungus Pleosporales sp. CF09-1. J. Nat. Prod. 2019, 82, 386–392. [Google Scholar] [CrossRef]
- Cao, F.; Zhao, D.; Chen, X.-Y.; Liang, X.D.; Li, W.; Zhu, H.J. Antifungal drimane sesquiterpenoids from a marine-derived Pleosporales sp. fungus. Chem. Nat. Compd. 2017, 53, 1189–1191. [Google Scholar] [CrossRef]
- Zhang, L.-H.; Bai, J.; Yan, D.-J.; Wang, Y.-N.; Zhang, Y.-L.; Li, L.; Liu, B.-Y.; Hu, Y.-C. Pleosporalesones A–B, two unique polyketides isolated from Pleosporales sp. Tetrahedron Lett. 2019, 60, 375–377. [Google Scholar] [CrossRef]
- Chen, C.J.; Zhou, Y.Q.; Liu, X.X.; Zhang, W.J.; Hu, S.S.; Lin, L.P.; Huo, G.M.; Jiao, R.H.; Tan, R.X.; Ge, H.M. Antimicrobial and anti-inflammatory compounds from a marine fungus Pleosporales sp. Tetrahedron Lett. 2015, 56, 6183–6189. [Google Scholar] [CrossRef]
- Dong, L.; Kim, H.J.; Cao, T.Q.; Liu, Z.; Lee, H.; Ko, W.; Kim, Y.C.; Sohn, J.H.; Kim, T.K.; Yim, J.H.; et al. Anti-Inflammatory effects of metabolites from antarctic fungal strain Pleosporales sp. SF-7343 in HaCaT human keratinocytes. Int. J. Mol. Sci. 2021, 22, 9674. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Cao, T.Q.; Liu, Z.; Tuan, N.Q.; Kim, Y.C.; Sohn, J.H.; Yim, J.H.; Lee, D.S.; Oh, H. Anti-Inflammatory effects exerted by 14-methoxyalternate C from antarctic fungal strain Pleosporales sp. SF-7343 via the regulation of NF-κB and JAK2/STAT3 in HaCaT human keratinocytes. Int. J. Mol. Sci. 2022, 23, 14642. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xu, K.; Chen, W.Q.; Guo, Z.H.; Liu, Y.T.; Qiao, Y.N.; Sun, Y.; Sun, G.; Peng, X.P.; Lou, H.X. Heptaketides from the endophytic fungus Pleosporales sp. F46 and their antifungal and cytotoxic activities. RSC Adv. 2019, 9, 12913–12920. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, H.; Ye, J.; Wu, X.; Wang, W.; Lin, H.; Yan, X.; Lazaro, J.E.H.; Wang, T.; Naman, C.B.; et al. Cytotoxic polyketide metabolites from a marine mesophotic zone Chalinidae sponge-associated fungus Pleosporales sp. NBUF144. Mar. Drugs 2021, 19, 186. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Sun, C.; Li, C.; Zhang, G.; Zhu, T.; Li, D.; Che, Q. Antibacterial phenalenone derivatives from marine-derived fungus Pleosporales sp. HDN1811400. Tetrahedron Lett. 2021, 68, 152938. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, A.; Cao, F.; Liu, Y.-F. Diketopiperazine alkaloids and steroids from a marine-derived Pleosporales sp. fungus. Chem. Nat. Compd. 2018, 54, 818–820. [Google Scholar] [CrossRef]
- Zeng, H.T.; Yu, Y.H.; Zeng, X.; Li, M.M.; Li, X.; Xu, S.S.; Tu, Z.C.; Yuan, T. Anti-inflammatory dimeric benzophenones from an endophytic Pleosporales species. J. Nat. Prod. 2022, 85, 162–168. [Google Scholar] [CrossRef]
- Alhadrami, H.A.; Sayed, A.M.; El-Gendy, A.O.; Shamikh, Y.I.; Gaber, Y.; Bakeer, W.; Sheirf, N.H.; Attia, E.Z.; Shaban, G.M.; Khalifa, B.A.; et al. A metabolomic approach to target antimalarial metabolites in the Artemisia annua fungal endophytes. Sci. Rep. 2021, 11, 2770. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Abdelaleem, E.R.; Samy, M.N.; Ali, T.F.S.; Mustafa, M.; Ibrahim, M.A.A.; Bringmann, G.; Ahmed, S.A.; Abdelmohsen, U.R.; Desoukey, S.Y. NS3 helicase inhibitory potential of the marine sponge Spongia irregularis. RSC Adv. 2022, 12, 2992–3002. [Google Scholar] [CrossRef]
- Attia, E.Z.; Khalifa, B.A.; Shaban, G.M.; Amin, M.N.; Akil, L.; Khadra, I.; Al Karmalawy, A.A.; Alnajjar, R.; Zaki, M.Y.W.; Aly, O.M.; et al. Abdelmohsen, U.R. Potential topoisomerases inhibitors from Aspergillus terreus using virtual screening. S. Afr. J. Bot. 2022, 149, 632–645. [Google Scholar] [CrossRef]
- Noor, A.O.; Almasri, D.M.; Bagalagel, A.A.; Abdallah, H.M.; Mohamed, S.G.A.; Mohamed, G.A.; Ibrahim, S.R.M. Naturally occurring isocoumarins derivatives from endophytic fungi: Sources, isolation, structural characterization, biosynthesis, and biological activities. Molecules 2020, 25, 395. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Fan, W.; Guo, H.; Huang, C.; Yan, Z.; Long, Y. Two new secondary metabolites from the mangrove endophytic fungus Pleosporales sp. SK7. Nat. Prod. Res. 2020, 34, 2919–2925. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.H.; Edrada-Ebel, R.; Indriani, I.D.; Wray, V.; Müller, W.E.; Totzke, F.; Lin, W. Cytotoxic metabolites from the fungal endophyte Alternaria sp. and their subsequent detection in its host plant Polygonum senegalense. J. Nat. Prod. 2008, 71, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ondeyka, J.G.; Zink, D.L.; Basilio, A.; Vicente, F.; Collado, J.; Platas, G.; Huber, J.; Dorso, K.; Motyl, M.; et al. Isolation, structure and antibacterial activity of pleosporone from a Pleosporalean ascomycete discovered by using antisense strategy. Bioorg. Med. Chem. 2009, 17, 2162–2166. [Google Scholar] [CrossRef] [PubMed]
- Okamura, N.; Haraguchi, H.; Hashimoto, K.; Yagi, A. Altersolanol-related antimicrobial compounds from a strain of Alternaria solani. Phytochemistry 1993, 34, 1005–1009. [Google Scholar] [CrossRef]
- Brian, P.W.; Curtis, P.J.; Grove, J.; Hemming, H.G.; Unwin, C.H.; Wright, J.M. Alternaric Acid, a Biologically Active Metabolic Product of the Fungus Alternaria solani. Nature 1949, 164, 534. [Google Scholar] [CrossRef]
- Seitz, L.M.; Paukstelis, J.V. Metabolites of Alternaria alternata: Ergosterol and ergosta-4, 6, 8 (14), 22-tetraen-3-one. J. Agric. Food Chem. 1977, 25, 838–841. [Google Scholar] [CrossRef]
- Ai, H.-L.; Zhang, L.-M.; Chen, Y.-P.; Zi, S.-H.; Xiang, H.; Zhao, D.-K.; Shen, Y. Two new compounds from an endophytic fungus Alternaria solani. J. Asian Nat. Prod. Res. 2012, 14, 1144–1148. [Google Scholar] [CrossRef]
- Krohn, K.; Biele, C.; Aust, H.J.; Draeger, S.; Schulz, B. Herbarulide, a ketodivinyllactone steroid with an unprecedented homo-6-oxaergostane skeleton from the endophytic fungus Pleospora herbarum. J. Nat. Prod. 1999, 62, 629–630. [Google Scholar] [CrossRef]
- Fujii, I.; Yoshida, N.; Shimomaki, S.; Oikawa, H.; Ebizuka, Y. An iterative type I polyketide synthase PKSN catalyzes synthesis of the decaketide alternapyrone with regio-specific octa-methylation. Chem. Biol. 2005, 12, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Heidary Jamebozorgi, F.; Yousefzadi, M.; Firuzi, O.; Nazemi, M.; Jassbi, A.R. In vitro anti-proliferative activities of the sterols and fatty acids isolated from the Persian Gulf sponge; Axinella sinoxea. DARU J. Pharm. Sci. 2019, 27, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Chamras, H.; Ardashian, A.; Heber, D.; Glaspy, J.A. Fatty acid modulation of MCF-7 human breast cancer cell proliferation, apoptosis and differentiation. J. Nutr. Biochem. 2002, 13, 711–716. [Google Scholar] [CrossRef]
- Serini, S.; Piccioni, E.; Merendino, N.; Calviello, G. Dietary polyunsaturated fatty acids as inducers of apoptosis: Implications for cancer. Apoptosis 2009, 14, 135–152. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Deutsch, E.; Opolon, P.; Auperin, A.; Frascogna, V.; Connault, E.; Bourhis, J. n-3 Polyunsaturated fatty acids decrease mucosal/epidermal reactions and enhance antitumour effect of ionising radiation with inhibition of tumour angiogenesis. Br. J. Cancer 2003, 89, 1102–1107. [Google Scholar] [CrossRef]
- Spencer, L.; Mann, C.; Metcalfe, M.; Webb, M.; Pollard, C.; Spencer, D.; Berry, D.; Steward, W.; Dennison, A. The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur. J. Cancer 2009, 45, 2077–2086. [Google Scholar] [CrossRef]
No. | Compound Name | Mode | m/z | Rt | Molecular Weight | Exact Mass | Delta M | Molecular Formula |
---|---|---|---|---|---|---|---|---|
1 | 3,4-Dihydro-8-hydroxy-1-oxo-1H-2-benzopyran-3-methyl carboxylate | [M + H]+ | 223.0607 | 6.46 | 222.0534 | 222.0528 | 0.0006 | C11H10O5 |
2 | (1’S, 2Z)-3-methyl-5-(2,6,6-trimethyl-4-oxocyclohex-2-enyl)pent-2-enoicacid | [M − H]– | 249.1492 | 11.83 | 250.1727 | 250.1569 | 0.0158 | C15H22O |
3 | Desmethylaltenusin | [M + H]+ | 277.0714 | 4.51 | 276.0641 | 276.0634 | 0.0007 | C14H12O6 |
4 | Pleosporone | [M − H]– | 289.1067 | 6.09 | 290.1140 | 290.0790 | 0.0350 | C15H14O6 |
5 | Altersolanol G | [M + H]+ | 335.1130 | 4.05 | 334.1058 | 334.1053 | 0.0005 | C17H18O7 |
6 | Asterric acid | [M − H]– | 347.07601 | 4.38 | 348.0832 | 348.0845 | 0.0013 | C17H16O8 |
7 | 10,11-Dideoxy, 6,19-dihydro alternaric acid | [M − H]– | 379.2131 | 11.88 | 380.2204 | 380.2199 | 0.0005 | C21H32O6 |
8 | Ergosta-4,6,8(14),22-tetraen-3-one | [M + H]+ | 393.3153 | 15.30 | 392.3080 | 392.3079 | 0.0001 | C28H40O |
9 | Methyl 3-chloroasterric acid | [M − H]– | 395.15207 | 11.96 | 396.1593 | 396.0612 | 0.0981 | C18H17ClO8 |
10 | 20-Hydroxyergosta-4,6,8(14),22-tetraen-3-one | [M + H]+ | 409.3096 | 12.59 | 408.3024 | 408.3028 | 0.0004 | C28H40O2 |
11 | Herbarulide | [M + H]+ | 425.3049 | 10.61 | 424.2976 | 424.2977 | 0.0001 | C28H40O3 |
12 | Alternapyrone | [M + H]+ | 429.3363 | 13.40 | 428.3290 | 428.3290 | 0.0000 | C28H44O3 |
No. | Compound Name | Rt | Area % | Molecular Weight | Molecular Formula | Retention Index | Retention Index Standard |
---|---|---|---|---|---|---|---|
13 | Methyl palmitate | 30.29 | 18.72 | 270.5 | C17H34O2 | 1649 | 1922 |
14 | Ethyl palmitate | 31.51 | 12.60 | 284.5 | C18H36O2 | 1790 | 1996 |
15 | 13-Octadecenoic acid, methyl ester | 34.01 | 19.36 | 296.5 | C19H36O2 | 1747 | 2098 |
16 | Methyl linoleate | 34.29 | 11.92 | 294.5 | C19H34O2 | 1755 | 2097 |
17 | Ethyl linoleate | 35.35 | 3.25 | 270.5 | C20H36O2 | 1786 | 2173 |
No. | Compound Name | Rt | Area % | Molecular Weight | Molecular Formula | Retention Index | Retention Index Standard |
---|---|---|---|---|---|---|---|
13 | Methyl palmitate | 30.26 | 25.48 | 270.5 | C17H34O2 | 1648 | 1922 |
18 | Palmitic acid | 31.48 | 12.60 | 256.42 | C16H32O2 | 1677 | 1970 |
19 | Methyl oleate | 33.99 | 26.90 | 296.5 | C19H36O2 | 1746 | 2062 |
16 | Methyl linoleate | 34.28 | 23.39 | 294.5 | C19H34O2 | 1754 | 2097 |
20 | Oleic acid | 35.19 | 4.01 | 282.5 | C18H34O2 | 1781 | 2120 |
21 | Linoleic acid | 35.52 | 3.25 | 280.4 | C18H32O2 | 1791 | 2104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samy, M.N.; Attia, E.Z.; Khalifa, B.A.; Abdelmohsen, U.R.; Ross, S.A. LC-ESI-MS and GC-MS Profiling, Chemical Composition, and Cytotoxic Activity of Endophytic Fungus Pleosporales sp. Derived from Artemisia annua. Chemistry 2024, 6, 1336-1346. https://doi.org/10.3390/chemistry6060078
Samy MN, Attia EZ, Khalifa BA, Abdelmohsen UR, Ross SA. LC-ESI-MS and GC-MS Profiling, Chemical Composition, and Cytotoxic Activity of Endophytic Fungus Pleosporales sp. Derived from Artemisia annua. Chemistry. 2024; 6(6):1336-1346. https://doi.org/10.3390/chemistry6060078
Chicago/Turabian StyleSamy, Mamdouh Nabil, Eman Zekry Attia, Basma Ali Khalifa, Usama Ramadan Abdelmohsen, and Samir Anis Ross. 2024. "LC-ESI-MS and GC-MS Profiling, Chemical Composition, and Cytotoxic Activity of Endophytic Fungus Pleosporales sp. Derived from Artemisia annua" Chemistry 6, no. 6: 1336-1346. https://doi.org/10.3390/chemistry6060078
APA StyleSamy, M. N., Attia, E. Z., Khalifa, B. A., Abdelmohsen, U. R., & Ross, S. A. (2024). LC-ESI-MS and GC-MS Profiling, Chemical Composition, and Cytotoxic Activity of Endophytic Fungus Pleosporales sp. Derived from Artemisia annua. Chemistry, 6(6), 1336-1346. https://doi.org/10.3390/chemistry6060078