Cancer-Associated Fibroblast Subtypes Reveal Distinct Gene Signatures in the Tumor Immune Microenvironment of Vestibular Schwannoma
<p>CAF subtypes reveal distinct gene signatures at the single-cell level. (<b>A</b>) Uniform manifold approximation and projection of CAF subtypes for VS. (<b>B</b>) Heat map of CAF subtypes (ecmCAF, ecmCAF1, ecmCAF2, infCAF, apCAF, and myoCAF). (<b>C</b>–<b>E</b>) Gene ontology networks for ecmCAF (<b>C</b>), ecmCAF1 (<b>D</b>), and ecmCAF2 (<b>E</b>). (<b>F</b>,<b>G</b>) PPI (<b>H</b>) and gene ontology (<b>G</b>) networks for ecmCAF2. (<b>I</b>,<b>J</b>) Gene ontology (<b>I</b>) and PPI (<b>J</b>) networks for infCAF. (<b>K</b>,<b>L</b>) Gene ontology (<b>K</b>) and PPI (<b>L</b>) networks for myoCAF. (<b>M</b>) Box plot for EMC score in CAF subtypes. CAF, cancer-associated fibroblast; VS, vestibular schwannoma; ecmCAF, extracellular matrix CAF; infCAF, immune regulatory/inflammatory CAF; apCAF, antigen-presenting CAF; myoCAF, myofibroblastic CAF; PPI, protein–protein interaction.</p> "> Figure 2
<p>ApCAFs are enriched in the high-immunity group. (<b>A</b>) Box plot for apCAF, ecmCAF, infCAF, and myoCAF expression in the high- and low-immunity groups. (<b>B</b>) Box plot for telomere maintenance mechanism pathway activity in the high- and low-immunity groups. (<b>C</b>) Heat map of different CAF subtype cell types in the high- and low-immunity groups. (<b>D</b>) Bar graph of the <span class="html-italic">p</span>-value for cancer hallmarks in the two groups (pink, high-immunity group; sky blue, low-immunity group). (<b>E</b>) Heat map of 84 Kyoto Encyclopedia of Genes and Genomes metabolic pathways in the two groups (<b>top</b>, high-immunity group; <b>bottom</b>, low-immunity group).</p> "> Figure 3
<p>CAF subtypes show metabolic heterogeneity and distinct stem-like CAF signatures at the single-cell level. (<b>A</b>) Bar graph of a fraction of CAF subtypes at the single-cell level. (<b>B</b>) Heat map of metabolic reprogramming for CAF subtypes at the single-cell level. (<b>C</b>) tSNE plot for stem-like CAFs (<b>left</b>, patient 1; <b>middle</b>, patient 2; <b>right</b>, patient 3). (<b>D</b>) Bar graph of stemness in clusters (<b>top</b>, number of links; <b>middle</b>, Delta-Entropy; <b>bottom</b>, number of links + Delta-Entropy). (<b>E</b>) Bar graph of a fraction of CAF subtypes. (<b>F</b>) Gene ontology analysis network for highly differentially expressed genes (<b>left</b>, patient 1; <b>middle</b>, patient 2; <b>right</b>, patient 3). tSNE, t-distributed stochastic neighbor embedding.</p> "> Figure 4
<p>CAF subtype signatures predict patient prognosis in pan-cancer. (<b>A</b>) PPI network for stem-like CAF (<b>left</b>, patient 1; <b>middle</b>, patient 2; <b>right</b>, patient 3). (<b>B</b>) Box plot of T cell cytotoxicity, exhaustion, regulatory cytokines, naïve, and costimulation in three patients at the single-cell level. (<b>C</b>) Box plot of a fraction of CAF subtypes in the high- and low-immunity groups. (<b>D</b>) Heat map of cancer hallmark pathway activity in eight CAF subtypes in bulk samples. (<b>E</b>) Kaplan–Meier plots showing the overall survival rates for the high and low CAF subtype signatures in low-grade glioma. (<b>F</b>) Heat map of overall survival rate for the three CAF subtype signatures in The Cancer Genome Atlas Pan-Cancer.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Single-Cell Analysis
2.2. Bulk Gene Expression Data Analysis
3. Results
3.1. CAF Subtypes Reveal Different Gene Signatures at the Single-Cell Level
3.2. CAF Subtypes Exhibit Varied Metabolic Reprogramming in Different Immune Statuses
3.3. CAF Subtype-Specific Metabolic Reprogramming Results in Patient-Specific Phenotypes
3.4. CAF Subtype Signature of VS Is Unique
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Liu, L.; Yao, H.H.; Zhu, Z.Q.; Ning, Z.L.; Huang, Q. Stromal myofibroblasts are associated with poor prognosis in solid cancers: A meta-analysis of published studies. PLoS ONE 2016, 11, e0159947. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, D.S.; Yeadon, T.M.; Clouston, A.D.; Crawford, D.G.; Fawcett, J.; Callaghan, S.A.; Gotley, D.C. Tumor progression in hepatocellular carcinoma: Relationship with tumor stroma and parenchymal disease. J. Gastroenterol. Hepatol. 2003, 18, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Kretzschmar, K.; Weber, C.; Driskell, R.R.; Calonje, E.; Watt, F.M. Compartmentalized epidermal activation of beta-catenin differentially affects lineage reprogramming and underlies tumor heterogeneity. Cell Rep. 2016, 14, 269–281. [Google Scholar] [CrossRef]
- Lavie, D.; Ben-Shmuel, A.; Erez, N.; Scherz-Shouval, R. Cancer-associated fibroblasts in the single-cell era. Nat. Cancer 2022, 3, 793–807. [Google Scholar] [CrossRef]
- Davidson, S.; Efremova, M.; Riedel, A.; Mahata, B.; Pramanik, J.; Huuhtanen, J.; Kar, G.; Vento-Tormo, R.; Hagai, T.; Chen, X.; et al. Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth. Cell Rep. 2020, 31, 107628. [Google Scholar] [CrossRef] [PubMed]
- Darby, I.A.; Zakuan, N.; Billet, F.; Desmoulière, A. The myofibroblast, a key cell in normal and pathological tissue repair. Cell Mol. Life Sci. 2016, 73, 1145–1157. [Google Scholar] [CrossRef]
- Guerrero-Juarez, C.F.; Dedhia, P.H.; Jin, S.; Ruiz-Vega, R.; Ma, D.; Liu, Y.; Yamaga, K.; Shestova, O.; Gay, D.L.; Yang, Z.; et al. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nat. Commun. 2019, 10, 650. [Google Scholar] [CrossRef]
- Chen, P.Y.; Wei, W.F.; Wu, H.Z.; Fan, L.S.; Wang, W. Cancer-associated fibroblast heterogeneity: A factor that cannot be ignored in immune microenvironment remodeling. Front. Immunol. 2021, 12, 671595. [Google Scholar] [CrossRef]
- Sung, J.Y.; Cheong, J.H. New immunometabolic strategy based on cell type-specific metabolic reprogramming in the tumor immune microenvironment. Cells 2022, 11, 768. [Google Scholar] [CrossRef]
- Xu, M.; Wang, S.; Jiang, Y.; Wang, J.; Xiong, Y.; Dong, W.; Yao, Q.; Xing, Y.; Liu, F.; Chen, Z.; et al. Single-cell RNA-Seq reveals heterogeneity of cell communications between Schwann cells and fibroblasts within vestibular schwannoma microenvironment. Am. J. Pathol. 2022, 192, 1230–1249. [Google Scholar] [CrossRef]
- Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M.; Zheng, S.; Butler, A.; Lee, M.J.; Wilk, A.J.; Darby, C.; Zager, M.; et al. Integrated analysis of multimodal single-cell data. Cell 2021, 184, 3573–3587.e29. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013, 14, 7. [Google Scholar] [CrossRef]
- Grün, D.; Muraro, M.J.; Boisset, J.C.; Wiebrands, K.; Lyubimova, A.; Dharmadhikari, G.; van den Born, M.; van Es, J.; Jansen, E.; Clevers, H.; et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 2016, 19, 266–277. [Google Scholar] [CrossRef]
- Aran, D.; Hu, Z.; Butte, A.J. xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017, 18, 220. [Google Scholar] [CrossRef]
- Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019, 47, W556–W560. [Google Scholar] [CrossRef]
- Gorchs, L.; Kaipe, H. Interactions between cancer-associated fibroblasts and T cells in the pancreatic tumor microenvironment and the role of chemokines. Cancers 2021, 13, 2995. [Google Scholar] [CrossRef]
- Sung, J.Y.; Cheong, J.H. Intercellular communications and metabolic reprogramming as new predictive markers for immunotherapy responses in gastric cancer. Cancer Commun. 2022, 42, 572–575. [Google Scholar] [CrossRef]
- Sung, J.Y.; Cheong, J.H. The matrisome is associated with metabolic reprograming in stem-like phenotypes of gastric cancer. Cancers 2022, 14, 1438. [Google Scholar] [CrossRef]
- Sung, J.Y.; Cheong, J.H. Prognosis-related gene signature is enriched in cancer-associated fibroblasts in the stem-like subtype of gastric cancer. Clin. Transl. Med. 2022, 12, e930. [Google Scholar] [CrossRef]
- Luo, H.; Xia, X.; Huang, L.B.; An, H.; Cao, M.; Kim, G.D.; Chen, H.N.; Zhang, W.H.; Shu, Y.; Kong, X.; et al. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nat. Commun. 2022, 13, 6619. [Google Scholar] [CrossRef]
- Karakasheva, T.A.; Lin, E.W.; Tang, Q.; Qiao, E.; Waldron, T.J.; Soni, M.; Klein-Szanto, A.J.; Sahu, V.; Basu, D.; Ohashi, S.; et al. IL-6 mediates cross-talk between tumor cells and activated fibroblasts in the tumor microenvironment. Cancer Res. 2018, 78, 4957–4970. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, J.-Y.; Lee, J.W. Cancer-Associated Fibroblast Subtypes Reveal Distinct Gene Signatures in the Tumor Immune Microenvironment of Vestibular Schwannoma. Cells 2024, 13, 1669. https://doi.org/10.3390/cells13191669
Sung J-Y, Lee JW. Cancer-Associated Fibroblast Subtypes Reveal Distinct Gene Signatures in the Tumor Immune Microenvironment of Vestibular Schwannoma. Cells. 2024; 13(19):1669. https://doi.org/10.3390/cells13191669
Chicago/Turabian StyleSung, Ji-Yong, and Jung Woo Lee. 2024. "Cancer-Associated Fibroblast Subtypes Reveal Distinct Gene Signatures in the Tumor Immune Microenvironment of Vestibular Schwannoma" Cells 13, no. 19: 1669. https://doi.org/10.3390/cells13191669
APA StyleSung, J. -Y., & Lee, J. W. (2024). Cancer-Associated Fibroblast Subtypes Reveal Distinct Gene Signatures in the Tumor Immune Microenvironment of Vestibular Schwannoma. Cells, 13(19), 1669. https://doi.org/10.3390/cells13191669