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Abstract: Cancer-associated fibroblast (CAF) composition within the same organ varies across
different cancer subtypes. Distinct CAF subtypes exhibit unique features due to interactions with
immune cells and the tumor microenvironment. However, data on CAF subtypes in individuals
with vestibular schwannoma (VS) are lacking. Therefore, we aimed to distinguish CAF subtypes
at the single-cell level, investigate how stem-like CAF characteristics influence the tumor immune
microenvironment, and identify CAF subtype-specific metabolic reprogramming pathways that
contribute to tumor development. Data were analyzed from three patients with VS, encompassing
33,081 single cells, one bulk transcriptome cohort, and The Cancer Genome Atlas Pan-Cancer database
(RNA sequencing and clinical data). Our findings revealed that antigen-presenting CAFs are linked
to substantially heightened immune activity, supported by metabolic reprogramming, which differs
from tumorigenesis. High expression of the stem-like CAF gene signature correlated with poor
prognosis in low-grade gliomas within the pan-cancer database. This is the first study to classify
CAF subtypes in VS patients and identify a therapeutic vulnerability biomarker by developing a
stem-like CAF gene signature. Personalized treatments tailored to individual patients show promise
in advancing precision medicine.

Keywords: cancer-associated fibroblasts; CAF subtypes; metabolic reprogramming; stem-like CAF;
vestibular schwannoma

1. Introduction

Vestibular schwannoma is the most common cerebellopontine angle benign tumor
and originates from the cochleao-vestibular nerve. Although VS is benign, when located in
a fatal area, it can induce cranial complications such as hearing loss, facial palsy, hydro-
cephalus, and possible mortality. So, the most important prognostic factor associated with
VS is tumor growth. Many researchers have tried to find a prediction marker for tumor
growth, but no established markers exist yet.

Cancer-associated fibroblasts (CAFs) play a pivotal role in the tumor microenviron-
ment and influence tumor growth and progression. They are the most common stromal
cells, and their presence is linked to poor prognosis [1]. Malignant transformation is often
preceded by an initial noticeable growth of fibroblasts, which is typically observed in early
or precancerous tumors [2]. The progressive nature of these transformations led to the
hypothesis that most stromal fibroblasts originally arise from localized fibroblasts subjected
to tissue dysfunction [3].

CAFs exhibit a wide range of characteristics, origins, and functions and can be fur-
ther subdivided into several subgroups, with the primary subgroups being myofibrob-
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lastic CAFs (myoCAFs), immune regulatory/inflammatory CAFs (infCAFs), and antigen-
presenting CAFs (apCAFs). The heterogeneity of these subgroups has been extensively
studied using single-cell RNA sequencing (RNA-seq) technologies [4].

The extracellular matrix (ECM) is a complex structure composed of extracellular
molecules that form a tissue-supportive physiological matrix and influence the architecture
and function of the extracellular space in malignant tumors and distant metastases. It
is a critical factor contributing to the formation of the tumor microenvironment (TME).
CAFs primarily mediate the accumulation, modification, and degradation of the ECM.
Pathological changes linked to poor prognosis in patients with breast, pancreatic, and lung
cancers are attributed to dysregulated ECM remodeling by CAFs [5]. CAFs are related to
myofibroblasts and acquire unique muscle contraction functions (characterized by high
expression of smooth muscle actin) during wound healing [6,7]. Fibroblasts can detect
physical stress and cellular damage signals, subsequently promoting cell regeneration and
repair through ECM biosynthetic pathways, while also regulating immune responses.

By modulating the tumor immune microenvironment (TIME), CAFs promote tumor
progression, immune evasion, and malignant transformation by suppressing cytokines and
chemokines, recruiting and retaining inhibitory myeloid and regulatory T cells, inhibiting
and excluding cytotoxic leukocytes and dendritic cells, and facilitating the polarization of
macrophages and T cells into their anti-inflammatory M2 and Th2 phenotypes. Moreover,
the Warburg effect, characterized by increased glucose uptake and lactic acid production
and decreased oxygen consumption, has been observed in CAFs. CAFs respond to glu-
tamine deficiency, and their metabolic heterogeneity has been thoroughly investigated [8].
We previously reported that various CAF subtypes employ different metabolic reprogram-
ming mechanisms, along with their mechanistic associations with tumor development [9].

Currently, there is limited information on whether the immunoregulatory functions
of CAFs, such as inducing inflammation and immunosuppression, are specific to certain
subgroups or if universal features are shared across cancer types and organs. Furthermore,
studies on CAF subtypes in vestibular schwannoma (VS) remain limited. Therefore, we
aimed to classify patients with VS based on their CAF features to identify differences in the
TIME. Additionally, this study sought to establish a foundation for patient classification by
CAF subtypes, facilitating precision medicine and the development of therapeutic strategies
for VS.

2. Materials and Methods
2.1. Single-Cell Analysis

For the single-cell analysis, 2373 fibroblasts were extracted from 33,081 cells de-
rived from three patients [10] using the R package “Seurat” [11]. Single-cell RNA se-
quencing (RNA-seq) data from a previous study [10] were provided by Dr. Feng Liu
(liufeng@sibs.ac.cn). CAF cell types were classified with the default settings of the uniform
manifold approximation and projection (UMAP) algorithm in the “Seurat” R package,
based on the well-established CAF marker genes across all cell types [10]. Roswell Park
Memorial Institute 1640 medium was used and transferred to an enzymatic hydrolysate
for tumor hydrolase. HFDM-1 (human fibroblast culture medium) was used for fibroblast
dissociation, and alpha smooth muscle actin, actin alpha 2, and vimentin served as markers
for CAF identification. In this study, adult patients with sporadic unilateral medium-sized
tumors were enrolled.

Gene ontology analysis for marker genes in each cluster was conducted using the
Metascape platform [12], applying the default values of the “Seurat” package, and protein–
protein interaction (PPI) networks were identified with the MCODE algorithm. Pathway
gene set activity was analyzed using the R package “GSVA” [13], with p-values computed
from one million simulations of altered expression profiles to assess the statistical signifi-
cance of the scores. RaceID and StemID [14] were employed to evaluate fibroblast stemness.
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2.2. Bulk Gene Expression Data Analysis

The VS cohort from the Gene Expression Omnibus repository (GSE141801) was used
to perform bulk gene expression analysis, and immune scores were calculated via decon-
volution analysis using xCell [15]. Classification into high- or low-immunity groups was
determined based on the average value: samples with values higher than the average were
placed in the high-immunity group, while those with lower values were classified into
low-immunity group. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway en-
richment analysis was performed to assess group-specific pathway activity. Fifty hallmark
cancer-related pathways from MSigDB were used for enrichment analysis. Furthermore,
the web-based GEPIA2 platform (http://gepia2.cancer-pku.cn/#index, accessed on 1 Au-
gust 2023) [16] was utilized to analyze gene signature expression and predict prognosis
using The Cancer Genome Atlas (TCGA) Pan-Cancer data. Genes with a p-value < 0.01 and
a fold change ≥ 1 were considered differentially expressed.

3. Results
3.1. CAF Subtypes Reveal Different Gene Signatures at the Single-Cell Level

Using single-cell data from 2373 fibroblasts, we identified six CAF subgroups: ecm-
CAFs, ecmCAF1, ecmCAF2, infCAFs, apCAFs, and myoCAFs (Figure 1A). Based on their
heterogeneity, we further classified ECM CAFs into ecmCAFs, ecmCAF1, and ecmCAF2.
The top 10 marker genes for each subtype were selected [ecmCAF (CDH19, FKBP5, and
ENTPD2), ecmCAF1 (SMOC2, POSTN, and ITGA1), ecmCAF2 (ZFP36, CYR61, and FOS),
infCAF (RPS6, IGFBP5, and SPARC), apCAF (LYZ, HLA-DQB1, HLA-DPB1, HLA-DPA1,
and CD74), and myoCAF (ERBB3, NRXN1, and COL14A1)] (Figure 1B). All ECM CAFs
were connected to the NABAcore matrisome (Figure 1C,D); however, the gene profile of
ecmCAF2 was enriched for activator protein 1 (AP1), vascular development biological
pathways, and responses to growth factors and hormones (Figure 1E). The gene profiles
of ECM CAF subtypes were enriched in Wnt signaling pathway regulation, response to
the elevated platelet cytosolic Ca2+ pathway, and enzyme-linked receptor protein signal-
ing system activity. The PPI of ecmCAF2 was related to the AP1 pathway, nerve growth
factor-stimulated transcription, and the transforming growth factor-beta signaling path-
way (Figure 1F). Notably, apCAFs had distinct characteristics. The antigen-presenting
CAF signatures were enriched for cell activation regulation, positive immune response
regulation, the inflammatory response, neutrophil degranulation, leukocyte activation,
and cytokine signaling in the immune system (Figure 1G). According to the PPI analysis,
apCAFs were mainly classified into four categories related to antigen processing and pre-
sentation, G alpha signaling events, the C1q complex, and synapse pruning (Figure 1H).
ApCAFs are primarily regulated by the transcription factors RFXANK, RFXAP, and RFX5
(Supplementary Figure S1A). The InfCAF signatures were mostly enriched in Rho GTPase
signaling, anaplastic lymphoma kinase signaling in cancer, and RHOV GTPase cycling,
whereas their PPI phenotypes were primarily linked to peptide chain elongation and cellu-
lar responses to stress (Figure 1I,J). PPI analysis of the myoCAFs revealed that they were
linked to ECM–receptor interactions and positive regulation of the plasma membrane and
that they were enriched in neuron projection development, glial cell differentiation, and
cell–cell adhesion (Figure 1K,L). MyoCAFs are primarily regulated by POU5F1, TCF4M,
and TFAP2A (Supplementary Figure S1B). Epithelial–mesenchymal transition genes were
enriched in ecmCAF1 (Figure 1M). Our findings are the first to establish the molecular
signature of CAF subtypes at the single-cell level and identify the pathways involved
in tumorigenesis.

http://gepia2.cancer-pku.cn/#index
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Figure 1. CAF subtypes reveal distinct gene signatures at the single-cell level. (A) Uniform manifold
approximation and projection of CAF subtypes for VS. (B) Heat map of CAF subtypes (ecmCAF,
ecmCAF1, ecmCAF2, infCAF, apCAF, and myoCAF). (C–E) Gene ontology networks for ecmCAF
(C), ecmCAF1 (D), and ecmCAF2 (E). (F,G) PPI (H) and gene ontology (G) networks for ecmCAF2.
(I,J) Gene ontology (I) and PPI (J) networks for infCAF. (K,L) Gene ontology (K) and PPI
(L) networks for myoCAF. (M) Box plot for EMC score in CAF subtypes. CAF, cancer-associated
fibroblast; VS, vestibular schwannoma; ecmCAF, extracellular matrix CAF; infCAF, immune regu-
latory/inflammatory CAF; apCAF, antigen-presenting CAF; myoCAF, myofibroblastic CAF; PPI,
protein–protein interaction.

3.2. CAF Subtypes Exhibit Varied Metabolic Reprogramming in Different Immune Statuses

Using bulk RNA-seq, we identified high- and low-immunity groups and examined the
TIME and cancer hallmarks in each group. Notably, apCAFs were significantly more enriched
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in the high-immunity group than in the low-immunity group (p < 0.001), whereas ECM CAFs,
infCAFs, and myoCAFs were significantly enriched in the low-immunity group (Figure 2A).
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Figure 2. ApCAFs are enriched in the high-immunity group. (A) Box plot for apCAF, ecmCAF,
infCAF, and myoCAF expression in the high- and low-immunity groups. (B) Box plot for telomere
maintenance mechanism pathway activity in the high- and low-immunity groups. (C) Heat map
of different CAF subtype cell types in the high- and low-immunity groups. (D) Bar graph of the
p-value for cancer hallmarks in the two groups (pink, high-immunity group; sky blue, low-immunity
group). (E) Heat map of 84 Kyoto Encyclopedia of Genes and Genomes metabolic pathways in the
two groups (top, high-immunity group; bottom, low-immunity group).
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Moreover, the activity of telomere maintenance mechanism pathways was higher
in the low-immunity group (Figure 2B). The correlation of CAFs with immune cells was
examined, which revealed differences between the high- and low-immunity groups. In
the high-immunity group, apCAFs were positively correlated with immune cells related
to innate immunity (B, CD8 + T, CD4 + T, dendritic, naïve B, and memory B cells). The
three ECM CAFs exhibited similar correlations with the immune cells. Regulatory T,
epithelial, natural killer T, endothelial cells, and infCAFs were positively correlated with
hematopoietic stem cells, smooth muscle cells, granulocyte/monocyte progenitor cells, and
plasma cells. MyoCAFs positively correlated with common myeloid progenitor cells, mast
cells, and platelets. The correlations with the low- and high-immunity groups differed.
Cells associated with innate immunity negatively correlated with apCAFs and positively
correlated with macrophages. CAF subtypes demonstrated distinct correlations with
immune cells (Figure 2C).

We further investigated the mechanisms by which the high-immunity group was
related to tumorigenesis in terms of cancer hallmarks and found that 32 of the 50 hallmark
characteristics differed significantly (false discovery rate < 0.001) between the two groups.
Three pathways (ultraviolet response downregulation, cholesterol homeostasis, and mi-
totic spindles) were significantly upregulated in the low-immunity group, whereas the
remaining twenty-nine pathways were significantly upregulated in the high-immunity
group (Figure 2D). These findings confirm that cancer hallmarks are more recognizable in
the high-immunity group than in the low-immunity group.

Finally, we examined the association between CAF subtypes and metabolic reprogram-
ming based on their immune status. apCAFs in the high-immunity group were associated
with cysteine and methionine metabolism, pantothenate coenzyme A biosynthesis, and
fatty acid biosynthesis, whereas those in the low-immunity group positively correlated with
various metabolic pathways such as glutathione metabolism, glycolysis, and phenylalanine
metabolism (Figure 2E). These findings imply that TIMEs contribute to energy metabolism
via metabolic reprogramming through interactions with different CAF subtypes.

3.3. CAF Subtype-Specific Metabolic Reprogramming Results in Patient-Specific Phenotypes

We performed a single-cell analysis of metabolic reprogramming by CAF subtypes
using 2373 CAFs from three patients with VS. Fractions of various CAF types were present
in these patients. Although the percentages of apCAFs were comparable across all three
patients, the proportions of heterogeneous ECM CAFs differed significantly between the
three patients. All three patients had ECM CAF proportions > 50% of the total CAF
(Figure 3A). Analysis of single cells facilitated a more specific analysis than that of bulk
samples, which was of interest because different CAF types use different proportions of
metabolic energy.

Specific pathways were enriched in apCAFs including the biosynthesis of neomycin,
kanamycin, and gentamicin; valine, leucine, and isoleucine; and pantothenate coenzyme A.
Metabolic pathways enriched in ecmCAF1s included glycosaminoglycan keratan sulfate,
glycan biosynthesis, glycosaminoglycan degradation, and glycosaminoglycan heparan.
Metabolic pathways enriched in ecmCAFs included steroid hormone biosynthesis, linoleic
acid and caffeine metabolism, vitamin B6 and nitrogen metabolism, and linoleic acid and
caffeine metabolism. Metabolic pathways enriched in myoCAFs included terpenoid back-
bone biosynthesis, thiamine metabolism, retinol metabolism, and phenylalanine, tyrosine,
and tryptophan biosynthesis. The InfCAFs involved in nitrogen, caffeine, and linoleic acid
metabolism exhibited patterns similar to those of ecmCAF2 (Figure 3B).
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Figure 3. CAF subtypes show metabolic heterogeneity and distinct stem-like CAF signatures at the
single-cell level. (A) Bar graph of a fraction of CAF subtypes at the single-cell level. (B) Heat map of
metabolic reprogramming for CAF subtypes at the single-cell level. (C) tSNE plot for stem-like CAFs
(left, patient 1; middle, patient 2; right, patient 3). (D) Bar graph of stemness in clusters (top, number
of links; middle, Delta-Entropy; bottom, number of links + Delta-Entropy). (E) Bar graph of a fraction
of CAF subtypes. (F) Gene ontology analysis network for highly differentially expressed genes (left,
patient 1; middle, patient 2; right, patient 3). tSNE, t-distributed stochastic neighbor embedding.
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We determined the differentially expressed genes associated with stemness and calculated
the transcriptomic entropy of CAFs for each patient using the StemID tool (Figure 3C). The
fraction of apCAFs was relatively high in the extremely high stemness cluster (Figure 3D,E).

In patient 1, antigen processing and presentation, neutrophil degranulation, positive
regulation of cytokine production, and regulation were all affected. The expression levels
of genes involved in immune effector processes were relatively high. In patient 2, genes
involved in lipid metabolism, atherosclerosis, the interleukin (IL)-18 signaling pathway, and
the VEGFA-VEGFR2, IL-17, and MAPK signaling pathways were all expressed at relatively
high levels. In patient 3, the expression levels of genes associated with the naba core matrix,
naba ECM glycoproteins, and collagen fibril organization were relatively high (Figure 3F).

These findings present a therapeutic strategy that can determine CAF heterogeneity
and the CAF subtype in each patient and potentially provide a cornerstone for the devel-
opment of more specific treatment options for patients with VS from the perspective of
precision medicine.

3.4. CAF Subtype Signature of VS Is Unique

We used the MCODE algorithm to perform PPI analysis to determine the CAF phe-
notype of each patient. Patient 1 was classified into the following five categories: classical
transcription, elongation of eukaryotic translation, antigen processing and presentation, ox-
idative phosphorylation, and G-alpha signaling events. This CAF phenotype is associated
with antibody-mediated activation of the complement system. Patient 2 was classified into
four categories related to the IL-18 signaling pathway: negative regulation of inclusion body
assembly, leukocyte differentiation, and signaling by NTRK1. Patient 3 was classified into
five categories: positive regulation of integrin-mediated signaling pathways, Th1 and Th2 cell
differentiation, cytoplasmic ribosomal proteins, collagen biosynthesis and modifying enzymes,
and mitochondrial ATP synthesis coupled with electron transport (Figure 4A).

At the single-cell level, the features of T cell costimulation, regulatory cytokines and
receptors, T cell exhaustion, and cytotoxicity in the three patients revealed that patient 1
had a greater proportion of cytotoxic T cells (Figure 4B). CAF subtypes at the single-cell
level in patients with VS are valuable for identifying CAF characteristics in each patient
using stem-like CAFs. We used the CAF gene signature identified at the single-cell level to
classify patients from the bulk gene expression profiles of patients with VS and identified
eight possible subtype classifications. The proportion of enriched apCAFs was highest in
the high-immunity group, while that of enriched infCAFs and myoCAFs that were enriched
was highest in the low-immunity group (Figure 4C).

We also examined bulk gene expression profiles in samples lacking CAF gene signature
expression. The degree of enrichment of the cancer hallmark pathway in each patient group
was determined via patient classification. We found that the hallmark cancer pathway was
most enriched in the patient group with CAF characteristics, in which apCAF, immune
CAF (immCAF), and ecmCAF signatures were expressed. The classification was similar in
the groups wherein apCAFs, immCAFs, and ecmCAFs were all expressed, only apCAFs
and immCAFs were expressed, and only apCAFs were expressed.
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Figure 4. CAF subtype signatures predict patient prognosis in pan-cancer. (A) PPI network for
stem-like CAF (left, patient 1; middle, patient 2; right, patient 3). (B) Box plot of T cell cytotoxicity,
exhaustion, regulatory cytokines, naïve, and costimulation in three patients at the single-cell level.
(C) Box plot of a fraction of CAF subtypes in the high- and low-immunity groups. (D) Heat map of
cancer hallmark pathway activity in eight CAF subtypes in bulk samples. (E) Kaplan–Meier plots
showing the overall survival rates for the high and low CAF subtype signatures in low-grade glioma.
(F) Heat map of overall survival rate for the three CAF subtype signatures in The Cancer Genome
Atlas Pan-Cancer.
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Although heterogeneity exists in cancer hallmark pathways, some pathways are
commonly highly expressed (such as reactive oxygen species, xenobiotic metabolism, the
p53 pathway, Notch signaling, and pancreatic beta cells). When only ecmCAFs were
expressed, the cancer hallmark pathway was similar to that in the group lacking CAF
signatures (Figure 4D). Our results were similar to those in which we confirmed the
significantly higher apCAF levels in the high-immunity group compared with the low-
immunity group (p < 0.001). The hallmark characteristics of cancer revealed a significantly
higher difference; nonetheless, the CAF subtypes were distinguishable. Furthermore, we
predicted the prognosis of low-grade gliomas using the gene signature identified in the
CAF subtype of each of the three patients using single-cell data. These results differentiated
the poor prognosis group from the high gene expression group (p = 0.023, VS1 stem-
like CAF SIG; p = 1 × 10−4, VS2 stem-like CAF SIG; p = 1.5 × 10−9, VS3 stem-like CAF
SIG; p = 7 × 10−7, VS total stem-like CAF SIG; Figure 4E). We used TCGA Pan-Cancer
data to confirm that the CAF signatures (Supplementary Tables S1–S3) identified at the
single-cell level aided prognosis. ApCAF and immCAF signatures were significantly
(p < 0.001) more prognostic than ecmCAF signatures. In contrast, ecmCAF signatures
in eight cancers confirmed poor prognosis in the high-expression group. We used the
stem-like CAF signature to confirm prognosis in TCGA Pan-Cancer. VS3 stem-like CAF
showed the largest differences (Figure 4F).

These results suggest that patients with VS can be classified from a precision medicine
perspective using the CAF signature identified at the single-cell level. In addition, as a
biomarker for predicting the TIME, the CAF signature can help predict tumor growth and
development, thereby facilitating the diagnosis of patients.

4. Discussion

Solid stromal tumors that are not infiltrated by immune cells exhibit limited thera-
peutic responses to immunotherapy [17]. Several studies have examined the link between
CAFs and the response to immune checkpoint inhibitors [18], as well as the prognosis of
solid tumors [19,20]. A recent pan-cancer analysis of 226 samples from 10 types of solid
cancers, which investigated the TME at single-cell resolution, revealed both the similarities
and plasticity of heterogeneous CAFs [21]. However, studies on the classification and
characterization of CAF subtypes in VS remain scarce. Therefore, we explored these aspects
and identified marker genes that classified CAFs into six distinct subtypes. In addition, we
confirmed the role of CAFs in antigen presentation during immune activation. Furthermore,
the high activity of CAFs in glycolysis, the citrate cycle, and fatty acid biosynthesis suggests
their involvement in the metabolic reprogramming of VS. Notably, bulk sample data analy-
sis showed distinct upregulation (60%) of cancer hallmarks in the high-immunity group.
CAFs displayed stem-like subtype characteristics in each patient, undergoing transitions
with high entropy and stemness at the single-cell level. We classified patients based on the
identified gene signature pattern at the single-cell level using stem-like CAFs. Additionally,
cancer hallmarks were highly active in patient samples with high signatures for all three
CAF subtypes (apCAF, immCAF, and ecmCAF). Finally, we found that the upregulation
of the IL-6–IL-6R signaling pathway is a defining feature of infCAFs and is shared across
multiple tumor types. We hypothesized that anti-IL-6 therapies, such as siltuximab and
tocilizumab, may target these CAFs [22].

In conclusion, we employed a systematic approach to characterize various CAF sub-
types and identify potential sources of CAFs. Additionally, we highlighted the various
states of CAFs in relation to metabolic reprogramming and prognosis. The identified gene
signature could inform the design of novel treatments targeting VS. CAFs may advance
personalized treatment in precision medicine.

However, further experiments are needed to elucidate the precise role of each subtype
and to trace its origin. Nonetheless, this is the first study to provide novel insights into
the role of CAFs in VS and may lay the groundwork for the development of CAF-targeted
therapies in the future.
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Supplementary Materials: The following supporting information can be downloaded at: https:
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the transcription factors RFXANK, RFXAP, and RFX5 (Figure S1A). MyoCAFs are primarily regulated
by POU5F1, TCF4M, and TFAP2A (Figure S1B); Table S1: Stem like CAF signature of patient1; Table
S2: Stem like CAF signature of patient2; Table S3: Stem like CAF signature of patient3.
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