Piezo-Enhanced Photocatalytic Performance of Bismuth Ferrite-Based Thin Film for Organic Pollutants Degradation
<p>The XRD results of the BFO (<b>a</b>) and BFCO (<b>b</b>) thin films deposited on STO, FTO, and ITO substrates.</p> "> Figure 2
<p>Tauc plots derived from UV-VIS spectroscopy measurements for the BFO (<b>a</b>) and BFCO (<b>b</b>) thin films.</p> "> Figure 3
<p>Topography images (<b>a</b>,<b>d</b>), out-of-plane piezoresponse amplitude images (<b>b</b>,<b>e</b>), out-of-plane phase images (<b>c</b>,<b>f</b>) of BFO/FTO (first row) and BFCO/STO (second row) thin films.</p> "> Figure 4
<p>Piezoresponse amplitude butterfly loops and phase hysteresis of BFO/FTO (<b>a</b>) and BFCO/STO (<b>b</b>) thin films.</p> "> Figure 5
<p>Photocatalytic and piezo-photocatalytic performance of (<b>a</b>) BFO (FTO) and (<b>b</b>) BFCO (STO) thin films.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Thin Films Characterization
3.1.1. Thin Films Microstructure
3.1.2. Optical Properties
3.1.3. Piezo-Ferroelectric Properties
3.2. Piezo-Photodegradation Efficiency Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nechache, R.; Harnagea, C.; Li, S.; Cardenas, L.; Huang, W.; Chakrabartty, J.; Rosei, F. Bandgap Tuning of Multiferroic Oxide Solar Cells. Nat. Photonics 2014, 61, 61–67. [Google Scholar] [CrossRef]
- Alexe, M.; Hesse, D. Tip-Enhanced Photovoltaic Effects in Bismuth Ferrite. Nat. Commun. 2011, 2, 256. [Google Scholar] [CrossRef] [Green Version]
- Qin, M.; Yao, K.; Liang, Y.C. High Efficient Photovoltaics in Nanoscaled Ferroelectric Thin Films. Appl. Phys. Lett. 2008, 93, 122904. [Google Scholar] [CrossRef]
- Kreisel, J.; Alexe, M.; Thomas, P.A. A Photoferroelectric Material Is More than the Sum of Its Parts. Nat. Mater. 2012, 11, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.Y.; Seidel, J.; Byrnes, S.J.; Shafer, P.; Yang, C.H.; Rossell, M.D.; Yu, P.; Chu, Y.H.; Scott, J.F.; Ager, J.W.; et al. Above-Bandgap Voltages from Ferroelectric Photovoltaic Devices. Nat. Nanotechnol. 2010, 5, 143–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidel, J.; Fu, D.; Yang, S.Y.; Alarcón-Lladó, E.; Wu, J.; Ramesh, R.; Ager, J.W. Efficient Photovoltaic Current Generation at Ferroelectric Domain Walls. Phys. Rev. Lett. 2011, 107, 126805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatnagar, A.; Roy Chaudhuri, A.; Heon Kim, Y.; Hesse, D.; Alexe, M. Role of Domain Walls in the Abnormal Photovoltaic Effect in BiFeO3. Nat. Commun. 2013, 4, 2835. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Sha, Z.; Xia, F.; Jia, R.; Tian, J.; Fu, Y.; Yu, L.; Dong, L. Boosting the Photoresponse Speed of Visible-Light-Active Bismuth Ferrite Thin Films Based on Fe-Site Substitution Strategy and Favorable Heterostructure Design. Appl. Surf. Sci. 2022, 590, 153054. [Google Scholar] [CrossRef]
- Man, S.; Leng, X.; Bai, J.; Kan, S.; Cui, Y.; Wang, J.; Xu, L. Enhancement of Photoelectrochemical Performance of BiFeO3 by Sm3+ Doping. Ceram. Int. 2023, 49, 10255–10264. [Google Scholar] [CrossRef]
- Anand, P.; Jaihindh, D.P.; Chang, W.-K.; Fu, Y.-P. Tailoring the Ca-doped bismuth ferrite for electrochemical oxygen evolution reaction and photocatalytic activity. Appl. Surf. Sci. 2021, 540, 148387. [Google Scholar] [CrossRef]
- Meng, D.; Xiao, Y.; He, H.; Liao, Y.; Zhang, H.; Zhai, J.; Chen, Z.; Martin, L.W.; Bai, F. Enhanced Spontaneous Polarization in Double Perovskite Bi2FeCrO6 Films. J. Am. Ceram. Soc. 2019, 102, 5234–5242. [Google Scholar] [CrossRef] [Green Version]
- Vinnik, D.A.; Kokovkin, V.V.; Volchek, V.V.; Zhivulin, V.E.; Abramov, P.A.; Cherkasova, N.A.; Sun, Z.; Sayyed, M.I.; Tishkevich, D.I.; Trukhanov, A.V. Electrocatalytic Activity of Various Hexagonal Ferrites in OER Process. Mater. Chem. Phys. 2021, 270, 124818. [Google Scholar] [CrossRef]
- Trukhanov, A.V.; Turchenko, V.A.; Kostishin, V.G.; Damay, F.; Porcher, F.; Lupu, N.; Bozzo, B.; Fina, I.; Polosan, S.; Silibin, M.V.; et al. The Origin of the Dual Ferroic Properties in Quasi-Centrosymmetrical SrFe12−xInxO19 Hexaferrites. J. Alloys Compd. 2021, 886, 161249. [Google Scholar] [CrossRef]
- Nur-E-Alam, M.; Vasiliev, M.; Belotelov, V.; Alameh, K. Properties of Ferrite Garnet (Bi, Lu, Y)3(Fe, Ga)5O12 Thin Film Materials Prepared by RF Magnetron Sputtering. Nanomaterials 2018, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, F.; Shen, Z.; Han, S.-T.; Chen, J.; Dong, C.; Chen, C.; Zhou, Y.; Wang, M. Photoferroelectric Perovskite Solar Cells: Principles, Advances and Insights. Nano Today 2021, 37, 101062. [Google Scholar] [CrossRef]
- Sarakinos, K.; Alami, J.; Konstantinidis, S. High Power Pulsed Magnetron Sputtering: A Review on Scientific and Engineering State of the Art. Surf. Coat. Technol. 2010, 204, 1661–1684. [Google Scholar] [CrossRef]
- Tiron, V.; Velicu, I.; Matei, T.; Cristea, D.; Cunha, L.; Stoian, G. Ultra-Short Pulse HiPIMS: A Strategy to Suppress Arcing during Reactive Deposition of SiO2 Thin Films with Enhanced Mechanical and Optical Properties. Coatings 2020, 10, 633. [Google Scholar] [CrossRef]
- Benetti, D.; Nouar, R.; Nechache, R.; Pepin, H.; Sarkissian, A.; Rosei, F.; MacLeod, J.M. Combined Magnetron Sputtering and Pulsed Laser Deposition of TiO2 and BFCO Thin Films. Sci. Rep. 2017, 7, 2503. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.W.; Miao, J.; Han, J.Z.; Shao, F.; Yuan, J.; Meng, K.K.; Wu, Y.; Xu, X.G.; Jiang, Y. Applied Surface Science High Resistance Ratio of Bipolar Resistive Switching in a Multiferroic/High-K Bi(Fe0.95Cr0.05)O3/ZrO2/Pt Heterostructure. Appl. Surf. Sci. 2018, 434, 687–692. [Google Scholar] [CrossRef]
- Ma, S.; Xia, F.; Jia, R.; Sha, Z.; Tian, J.; Yu, L.; Dong, L. Discovery of a Novel Visible-Light-Active Photodetector Based on Bismuth Ferrite: Constructing and Optimizing the Cr-Doped-BiFeO3/NiO Thin Fi Lm Heterostructure. Mater. Today Chem. 2023, 27, 101309. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, J.W.; Kim, W.; Kim, M.H.; Song, T.K.; Kim, S.S. Electrical Properties of (Bi0.9Ho0.1)(Fe0.975Cr0.025)O3 Thin Films Prepared by Using a Chemical Solution Deposition. Integr. Ferroelectr. 2012, 140, 37–41. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, S.; Cheng, J. The Study of BiCrxFe1−xO3 Thin Films Synthesized by Sol–Gel Technique. J. Eur. Ceram. Soc. 2010, 30, 271–275. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, P.; Shi, T.; Shao, X. Nd-Cr Co-Doped BiFeO3 Thin Films for Photovoltaic Devices with Enhanced Photovoltaic Performance. Thin Solid Films 2020, 698, 137852. [Google Scholar] [CrossRef]
- Qi, X.; Tsai, P.C.; Chen, Y.C.; Lin, Q.R.; Huang, J.C.A.; Chang, W.C.; Chen, I.G. Optimal Growth Windows of Multiferroic BiFeO3 Films and Characteristics of Ferroelectric Domain Structures. Thin Solid Films 2009, 517, 5862–5866. [Google Scholar] [CrossRef]
- Kartavtseva, M.S.; Gorbenko, O.Y.; Kaul, A.R.; Murzina, T.V.; Savinov, S.A.; Barthélémy, A. BiFeO3 Thin Films Prepared Using Metalorganic Chemical Vapor Deposition. Thin Solid Films 2007, 515, 6416–6421. [Google Scholar] [CrossRef]
- Khare, A.; Singh, A.; Prabhu, S.S.; Rana, D.S. Controlling Magnetism of Multiferroic (Bi0.9La0.1)2FeCrO6 Thin Films by Epitaxial and Crystallographic Orientation Strain. Appl. Phys. Lett. 2013, 102, 192911. [Google Scholar] [CrossRef]
- Irfan, S.; Rizwan, S.; Shen, Y.; Li, L.; Asfandiyar; Butt, S.; Nan, C.W. The Gadolinium (Gd3+) and Tin (Sn4+) Co-Doped BiFeO3 Nanoparticles as New Solar Light Active Photocatalyst. Sci. Rep. 2017, 7, srep42493. [Google Scholar] [CrossRef] [Green Version]
- Sportelli, G.; Boselli, T.; Protti, S.; Serpone, N.; Ravelli, D. Photovoltaic Materials as Heterogeneous Photocatalysts: A Golden Opportunity for Sustainable Organic Syntheses. Sol. RRL 2023, 7, 2201008. [Google Scholar] [CrossRef]
- Gao, F.; Chen, X.; Yin, K.; Dong, S.; Ren, Z.; Yuan, F.; Yu, T.; Zou, Z.; Liu, J.-M. Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles. Adv. Mater. 2007, 19, 2889–2892. [Google Scholar] [CrossRef]
- Fatima, S.; Ali, S.I.; Iqbal, M.Z.; Rizwan, S. The High Photocatalytic Activity and Reduced Band Gap Energy of La and Mn Co-Doped BiFeO3/Graphene Nanoplatelet (GNP) Nanohybrids. RSC Adv. 2017, 7, 35928–35937. [Google Scholar] [CrossRef] [Green Version]
- Sharmin, F.; Basith, M.A. Highly Efficient Photocatalytic Degradation of Hazardous Industrial and Pharmaceutical Pollutants Using Gadolinium Doped BiFeO3 Nanoparticles. J. Alloys Compd. 2022, 901, 163604. [Google Scholar] [CrossRef]
- Mabuti, L.A.; Manding, I.K.S.; Mercado, C.C. Photovoltaic and Photocatalytic Properties of Bismuth Oxyiodide-Graphene Nanocomposites. RSC Adv. 2018, 8, 42254–42261. [Google Scholar] [CrossRef]
- Su, C.; Li, C.; Li, R.; Wang, W. Insights into Highly Efficient Piezocatalytic Molecule Oxygen Activation over Bi2Fe4O9: Active Sites and Mechanism. Chem. Eng. J. 2022, 452, 139300. [Google Scholar] [CrossRef]
- Su, C.; Li, R.; Li, C.; Wang, W. Piezo-Promoted Regeneration of Fe2+ Boosts Peroxydisulfate Activation by Bi2Fe4O9 Nanosheets. Appl. Catal. B Environ. 2022, 310, 121330. [Google Scholar] [CrossRef]
- Chang, S.C.; Chen, H.Y.; Chen, P.H.; Lee, J.T.; Wu, J.M. Piezo-Photocatalysts Based on a Ferroelectric High-Entropy Oxide. Appl. Catal. B Environ. 2023, 324, 122204. [Google Scholar] [CrossRef]
- Xu, S.; Qian, W.; Zhang, D.; Zhao, X.; Zhang, X.; Li, C.; Bowen, C.R.; Yang, Y. A Coupled Photo-Piezo-Catalytic Effect in a BST-PDMS Porous Foam for Enhanced Dye Wastewater Degradation. Nano Energy 2020, 77, 105305. [Google Scholar] [CrossRef]
- Mushtaq, F.; Chen, X.; Hoop, M.; Torlakcik, H.; Pellicer, E.; Sort, J.; Gattinoni, C.; Nelson, B.J.; Pané, S. Piezoelectrically Enhanced Photocatalysis with BiFeO3 Nanostructures for Efficient Water Remediation. iScience 2018, 4, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, J.; Ye, C.; Wang, K.; Zhao, C.; Wu, Y.; He, Y. Photodeposition of CoOx Nanoparticles on BiFeO3 Nanodisk for Efficiently Piezocatalytic Degradation of Rhodamine B by Utilizing Ultrasonic Vibration Energy. Ultrason. Sonochem. 2021, 80, 105813. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zheng, D.; Jin, C.; Zheng, W.; Bai, H. High-Performance Photovoltaic Readable Ferroelectric Nonvolatile Memory Based on La-Doped BiFeO3 Films. ACS Appl. Mater. Interfaces 2018, 10, 19836–19843. [Google Scholar] [CrossRef]
- Gruverman, A.; Alexe, M.; Meier, D. Piezoresponse Force Microscopy and Nanoferroic Phenomena. Nat. Commun. 2019, 10, 1661. [Google Scholar] [CrossRef] [Green Version]
- Puli, V.S.; Pradhan, D.K.; Katiyar, R.K.; Coondoo, I.; Panwar, N.; Misra, P.; Chrisey, D.B.; Scott, J.F.; Katiyar, R.S. Photovoltaic Effect in Transition Metal Modified Polycrystalline BiFeO3 Thin Films. J. Phys. D Appl. Phys. 2014, 47, 075502. [Google Scholar] [CrossRef] [Green Version]
- Paillard, C.; Bai, X.; Infante, I.C.; Guennou, M.; Geneste, G.; Alexe, M.; Kreisel, J.; Dkhil, B. Photovoltaics with Ferroelectrics: Current Status and Beyond. Adv. Mater. 2016, 28, 5153–5168. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Sharma, Y.; Hong, S.; Katiyar, R.S. Modulation of Oxygen Vacancies Assisted Ferroelectric and Photovoltaic Properties of (Nd, V) Co-Doped BiFeO3 Thin Films. J. Phys. D Appl. Phys. 2018, 51, 275303. [Google Scholar] [CrossRef]
- Racles, C.; Ursu, C.; Dascalu, M.; Asandulesa, M.; Tiron, V.; Bele, A.; Tugui, C.; Teodoro, S. Multi-Stimuli Responsive Free-Standing Fi Lms of DR1- Grafted Silicones. Chem. Eng. J. 2020, 401, 126087. [Google Scholar] [CrossRef]
- Tiron, V.; Jijie, R.; Dumitru, I.; Cimpoesu, N.; Burducea, I.; Iancu, D.; Borhan, A.; Gurlui, S.; Bulai, G. Piezo-Ferroelectric Response of Bismuth Ferrite Based Thin Films and Their Related Photo/Piezocatalytic Performance. Ceram. Int. 2023, 49, 20304–20314. [Google Scholar] [CrossRef]
- Tiron, V.; Ciolan, M.A.; Bulai, G.; Mihalache, G.; Lipsa, F.D.; Jijie, R. Efficient Removal of Methylene Blue and Ciprofloxacin from Aqueous Solution Using Flower-like, Nanostructured ZnO Coating under UV Irradiation. Nanomaterials 2022, 12, 2193. [Google Scholar] [CrossRef]
- Bindu, P.; Thomas, S. Estimation of Lattice Strain in ZnO Nanoparticles: X-Ray Peak Profile Analysis. J. Theor. Appl. Phys. 2014, 8, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zheng, Y.; Cai, M.Q.; Huang, H.; Chan, H.L.W. First-Principles Study on the Electronic and Optical Properties of BiFeO3. Solid State Commun. 2009, 149, 641–644. [Google Scholar] [CrossRef]
- Neaton, J.B.; Ederer, C.; Waghmare, U.V.; Spaldin, N.A.; Rabe, K.M. First-Principles Study of Spontaneous Polarization in Multiferroic BiFeO3. Phys. Rev. B-Condens. Matter Mater. Phys. 2005, 71, 014113. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.J.; Robertson, J. Band Gap and Schottky Barrier Heights of Multiferroic BiFeO3. Appl. Phys. Lett. 2007, 90, 132903. [Google Scholar] [CrossRef]
- McDonnell, K.; Wadnerkar, N.; English, N.J.; Rahman, M.; Dowling, D. Photo-Active and Optical Properties of Bismuth Ferrite (BiFeO3): An Experimental and Theoretical Study. Chem. Phys. Lett. 2013, 572, 78–84. [Google Scholar] [CrossRef]
- Ortiz-Quiñonez, J.L.; Díaz, D.; Zumeta-Dubé, I.; Arriola-Santamaría, H.; Betancourt, I.; Santiago-Jacinto, P.; Nava-Etzana, N. Easy Synthesis of High-Purity BiFeO3 Nanoparticles: New Insights Derived from the Structural, Optical, and Magnetic Characterization. Inorg. Chem. 2013, 52, 10306–10317. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, P.; Yeo, D.; Chang, H.; Loh, L.; Dunn, S. Perovskite BiFeO3 Thin Film Photocathode Performance with Visible Light Activity. Nanotechnology 2016, 27, 345402. [Google Scholar] [CrossRef] [PubMed]
- Himcinschi, C.; Vrejoiu, I.; Friedrich, M.; Nikulina, E.; Ding, L.; Cobet, C.; Esser, N.; Alexe, M.; Rafaja, D.; Zahn, D.R.T. Substrate Influence on the Optical and Structural Properties of Pulsed Laser Deposited BiFeO3 Epitaxial Films. J. Appl. Phys. 2010, 107, 123524. [Google Scholar] [CrossRef]
- Gupta, S.D.; Agarwal, A.; Pradhan, S. Phytostimulatory Effect of Silver Nanoparticles (AgNPs) on Rice Seedling Growth: An Insight from Antioxidative Enzyme Activities and Gene Expression Patterns. Ecotoxicol. Environ. Saf. 2018, 161, 624–633. [Google Scholar] [CrossRef]
- Liang, Z.; Yan, C.F.; Rtimi, S.; Bandara, J. Piezoelectric Materials for Catalytic/Photocatalytic Removal of Pollutants: Recent Advances and Outlook. Appl. Catal. B Environ. 2019, 241, 256–269. [Google Scholar] [CrossRef]
- Mane, P.V.; Shinde, N.B.; Mulla, I.M.; Koli, R.R.; Shelke, A.R.; Karanjkar, M.M.; Gosavi, S.R.; Deshpande, N.G. Bismuth Ferrite Thin Film as an Efficient Electrode for Photocatalytic Degradation of Methylene Blue Dye. Mater. Res. Express 2018, 6, 026426. [Google Scholar] [CrossRef]
Sample | Phase | Crystallite Size (±1 nm) | Strain (±0.02%) |
---|---|---|---|
BFO/STO | BiFeO3 | 14 | 1.3 |
Bi25FeO40 | 36 | 0.24 | |
Bi2O3 | 50 | 0.34 | |
BFO/FTO | BiFeO3 | 22 | 0.78 |
BFO/ITO | BiFeO3 | 17 | 0.93 |
Bi2Fe4O9 | 22 | 0.61 | |
BFCO/STO | BiFeO3 | 6 | 1.5 |
Bi2Fe4O9 | 12 | 1.2 | |
BFCO/FTO | BiFeO3 | 24 | 0.54 |
Bi2Fe4O9 | 21 | 0.7 | |
CrO3 | 31 | 0.43 | |
BFCO/ITO | Bi2Fe4O9 | 10 | 1.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiron, V.; Jijie, R.; Matei, T.; Velicu, I.-L.; Gurlui, S.; Bulai, G. Piezo-Enhanced Photocatalytic Performance of Bismuth Ferrite-Based Thin Film for Organic Pollutants Degradation. Coatings 2023, 13, 1416. https://doi.org/10.3390/coatings13081416
Tiron V, Jijie R, Matei T, Velicu I-L, Gurlui S, Bulai G. Piezo-Enhanced Photocatalytic Performance of Bismuth Ferrite-Based Thin Film for Organic Pollutants Degradation. Coatings. 2023; 13(8):1416. https://doi.org/10.3390/coatings13081416
Chicago/Turabian StyleTiron, Vasile, Roxana Jijie, Teodora Matei, Ioana-Laura Velicu, Silviu Gurlui, and Georgiana Bulai. 2023. "Piezo-Enhanced Photocatalytic Performance of Bismuth Ferrite-Based Thin Film for Organic Pollutants Degradation" Coatings 13, no. 8: 1416. https://doi.org/10.3390/coatings13081416
APA StyleTiron, V., Jijie, R., Matei, T., Velicu, I.-L., Gurlui, S., & Bulai, G. (2023). Piezo-Enhanced Photocatalytic Performance of Bismuth Ferrite-Based Thin Film for Organic Pollutants Degradation. Coatings, 13(8), 1416. https://doi.org/10.3390/coatings13081416