Analysis of Magnetic Properties of Nano-Particles Due to a Magnetic Dipole in Micropolar Fluid Flow over a Stretching Sheet
<p>Configuration of the flow model.</p> "> Figure 2
<p>Impact of magnetic nano-particles and suction/injection (<math display="inline"><semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics></math>) on the velocity profile <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo stretchy="false">(</mo> <mi>η</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 3
<p>Impact of magnetic nano-particles and suction/injection (<math display="inline"><semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics></math>) on the microrotaion velocity <math display="inline"><semantics> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>η</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 4
<p>Impact of magnetic nano-particles and suction/injection (<math display="inline"><semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics></math>) on the temperature profile <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>η</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 5
<p>Impact of magnetic nano-particles and ferromagnetic parameter (<math display="inline"><semantics> <mi>β</mi> </semantics></math>) on the velocity profile <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo stretchy="false">(</mo> <mi>η</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 6
<p>Impact of magnetic nano-particles and ferromagnetic parameter (<math display="inline"><semantics> <mi>β</mi> </semantics></math>) on the micro-rotaion velocity <math display="inline"><semantics> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>η</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 7
<p>Impact of magnetic nano-particles and ferromagnetic parameter (<math display="inline"><semantics> <mi>β</mi> </semantics></math>) on the temperature profile <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>η</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 8
<p>Impact of magnetic nano-particles and micro-rotation parameter (<span class="html-italic">K</span>) on the velocity profile <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo stretchy="false">(</mo> <mi>η</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 9
<p>Impact of magnetic nano-particles and micro-rotation parameter (<span class="html-italic">K</span>) on the micro-rotaion velocity <math display="inline"><semantics> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>η</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 10
<p>Impact of magnetic nano-particles and micro-rotation parameter (<span class="html-italic">K</span>) on the temperature profile <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>η</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 11
<p>Impact of magnetic nano-particles and Prandtl Number (<math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> </mrow> </semantics></math>) on the temperature profile <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>η</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 12
<p>Impact of magnetic nano-particles and thermal radiation (<span class="html-italic">N</span>) on the temperature profile <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>η</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 13
<p>Impact of magnetic nano-particles and <span class="html-italic">R</span> (the ratio of <span class="html-italic">Q</span> and <span class="html-italic">S</span>) on the velocity profile <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo stretchy="false">(</mo> <mi>η</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 14
<p>Impact of magnetic nano-particles and <span class="html-italic">R</span> (the ratio of <span class="html-italic">Q</span> and <span class="html-italic">S</span>) on the micro-rotation velocity <math display="inline"><semantics> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>η</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 15
<p>Impact of magnetic nano-particles and viscous dissipation (<math display="inline"><semantics> <mi>λ</mi> </semantics></math>) on the temperature profile <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>η</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 16
<p>Impact of magnetic nano-particles and thermal radiation (<span class="html-italic">N</span>) on the Nusselt number.</p> "> Figure 17
<p>Impact of magnetic nano-particles and boundary parameter (<math display="inline"><semantics> <mi>δ</mi> </semantics></math>) on the Nusselt number.</p> "> Figure 18
<p>Impact of magnetic nano-particles and ferromagnetic parameter (<math display="inline"><semantics> <mi>β</mi> </semantics></math>) on skin friction.</p> "> Figure 19
<p>Impact of magnetic nano-particles and boundary parameter (<math display="inline"><semantics> <mi>δ</mi> </semantics></math>) on skin friction.</p> ">
Abstract
:1. Introduction
2. Problem Description
3. Implementation of the Method
4. Results and Discussion
5. Conclusions
- The velocity profile, the temperature, and the axial velocity are higher in the micro-polar ferromagnetic fluid compared to the ferrimagnetic fluid.
- The velocity profile decreases in the order Fe (ferromagnetic fluid) and Fe3O4 (ferrimagnetic fluid).
- Wall shears stress decreases at the variation in the value of parameter R (ratio), and the micro-rotation velocity is increased.
- The consequences of the ferromagnetic parameter generate a reduction in the velocity profile while micro-rotational velocity and temperature are incremented.
- The effects of K on the velocity profile and on the micro-rotational velocity are increasing, but the temperature is declining.
- The Nusselt number is declining for the increasing values of boundary parameter , while there is controversy with respect to the increasing values of radiation parameter N.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
P | Pressure of fluid |
Normal anxiety moduli | |
Fluid density | |
Viscosity of fluid | |
H | Magnetic penetrability |
Magnetic field | |
Thermal capability of nano-fluid | |
Spin gradient viscosity | |
Rosseland eradicative heat flux | |
Stefan-Boltzmann number | |
Mean assimilation coefficient | |
Curie temperature | |
T | Non-dimensional temperature |
Local Reynold number | |
Constants | |
R | Ratio of Q and S |
Temperature at surface | |
Temperature away from the surface | |
Boundary parameter | |
Velocity of sheet | |
Velocity components | |
Ferromagnetic parameter | |
Viscous dissipation | |
Normal anxiety moduli | |
Prandtl number | |
Elasticity parameter | |
M | Magnetization |
Dimensionless quantities | |
Strength of magnetic field | |
Nusselt number | |
Skin friction coefficient | |
N | Radiation |
K | Micro-rotation parameter |
Appendix A
Appendix A.1. Variational Formulation of FEM
Appendix A.2. Finite Element Formulation
References
- Das, S.K.; Choi, S.U.; Yu, W.; Pradeep, T. Nanofluids: Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Keblinski, P.; Prasher, R.; Eapen, J. Thermal conductance of nanofluids: Is the controversy over? J. Nanoparticle Res. 2008, 10, 1089–1097. [Google Scholar] [CrossRef]
- Godson, L.; Raja, B.; Lal, D.M.; Wongwises, S. Enhancement of heat transfer using nanofluids—An overview. Renew. Sustain. Energy Rev. 2010, 14, 629–641. [Google Scholar] [CrossRef]
- Özerinç, S.; Kakaç, S.; Yazıcıoğlu, A.G. Enhanced thermal conductivity of nanofluids: A state-of-the-art review. Microfluid. Nanofluid. 2010, 8, 145–170. [Google Scholar] [CrossRef]
- Wen, D.; Lin, G.; Vafaei, S.; Zhang, K. Review of nanofluids for heat transfer applications. Particuology 2009, 7, 141–150. [Google Scholar] [CrossRef]
- Sakiadis, B. Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface. AiChE J. 1961, 7, 221–225. [Google Scholar] [CrossRef]
- Crane, L.J. Flow past a stretching plate. Z. Angew. Math. Phys. 1970, 21, 645–647. [Google Scholar] [CrossRef]
- Mee, C. The mechanism of colloid agglomeration in the formation of Bitter patterns. Proc. Phys. Soci. Sect. A 1950, 63, 922. [Google Scholar] [CrossRef]
- Neuringer, J.L. Some viscous flows of a saturated ferro-fluid under the combined influence of thermal and magnetic field gradients. Int. J. Non-Linear Mech. 1966, 1, 123–137. [Google Scholar] [CrossRef]
- Nadeem, S.; Raishad, I.; Muhammad, N.; Mustafa, M. Mathematical analysis of ferromagnetic fluid embedded in a porous medium. Results Phys. 2017, 7, 2361–2368. [Google Scholar] [CrossRef]
- Andersson, H.; Valnes, O. Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole. Acta Mech. 1998, 128, 39–47. [Google Scholar] [CrossRef]
- Bognár, G.; Hriczó, K. Ferrofluid flow in the presence of magnetic dipole. Tech. Mech. 2019, 39, 3–15. [Google Scholar]
- Tang, T.; Fu, Y. Formation of chitosan/sodium phytate/nano-Fe3O4 magnetic coatings on wood surfaces via layer-by-layer self-assembly. Coatings 2020, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Ali, L.; Liu, X.; Ali, B.; Mujeed, S.; Abdal, S. Finite element simulation of multi-slip effects on unsteady MHD bioconvective micropolar nanofluid flow over a sheet with solutal and thermal convective boundary conditions. Coatings 2019, 9, 842. [Google Scholar] [CrossRef]
- Mabood, F.; Khan, W.; Ismail, A.M. MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study. J. Magn. Magn. Mater. 2015, 374, 569–576. [Google Scholar] [CrossRef]
- Ganguly, R.; Puri, I.K. Field-assisted self-assembly of superparamagnetic nanoparticles for biomedical, MEMS and BioMEMS applications. Adv. Appl. Mech. 2007, 41, 293–335. [Google Scholar]
- Odenbach, S. Recent progress in magnetic fluid research. J. Phys. Condens. Matter 2004, 16, R1135. [Google Scholar] [CrossRef]
- Nkurikiyimfura, I.; Wang, Y.; Pan, Z. Heat transfer enhancement by magnetic nanofluids—A review. Renew. Sustain. Energy Rev. 2013, 21, 548–561. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Flow of a micropolar fluid due to a porous stretching sheet and heat transfer. Int. J. Non-Linear Mech. 2016, 83, 59–64. [Google Scholar] [CrossRef]
- Pradhan, S.; Baag, S.; Mishra, S.; Acharya, M. Free convective MHD micropolar fluid flow with thermal radiation and radiation absorption: A numerical study. Heat Transf. Res. 2019, 48, 2613–2628. [Google Scholar] [CrossRef]
- Ishak, A.; Lok, Y.Y.; Pop, I. Stagnation-point flow over a shrinking sheet in a micropolar fluid. Chem. Eng. Commun. 2010, 197, 1417–1427. [Google Scholar] [CrossRef]
- Eringen, A.C. Theory of micropolar fluids. J. Math. Mech. 1966, 16, 1–18. [Google Scholar] [CrossRef]
- Gorla, R.S.R. Micropolar boundary layer flow at a stagnation point on a moving wall. Int. J. Eng. Sci. 1983, 21, 25–33. [Google Scholar] [CrossRef]
- Li, Q.; Xuan, Y.; Wang, J. Experimental investigations on transport properties of magnetic fluids. Exp. Therm. Fluid Sci. 2005, 30, 109–116. [Google Scholar] [CrossRef]
- Yirga, Y.; Tesfay, D. Heat and mass transfer in MHD flow of nanofluids through a porous media due to a permeable stretching sheet with viscous dissipation and chemical reaction effects. Int. J. Mech. Aero. Indus Mecha manu Eng. 2015, 9, 674–681. [Google Scholar]
- Nadeem, S.; Muhammad, N. Impact of stratification and Cattaneo-Christov heat flux in the flow saturated with porous medium. J. Mol. Liq. 2016, 224, 423–430. [Google Scholar] [CrossRef]
- Muhammad, N.; Nadeem, S.; Haq, R.U. Heat transport phenomenon in the ferromagnetic fluid over a stretching sheet with thermal stratification. Results Phys. 2017, 7, 854–861. [Google Scholar] [CrossRef]
- Ibrahim, W.; Shankar, B. MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions. Comput. Fluids 2013, 75, 1–10. [Google Scholar] [CrossRef]
- Das, K. Slip flow and convective heat transfer of nanofluids over a permeable stretching surface. Comput. Fluids 2012, 64, 34–42. [Google Scholar] [CrossRef]
- Abbas, Z.; Wang, Y.; Hayat, T.; Oberlack, M. Slip effects and heat transfer analysis in a viscous fluid over an oscillatory stretching surface. Int. J. Numer. Methods Fluids 2009, 59, 443–458. [Google Scholar] [CrossRef]
- Titus, L.; Abraham, A. Ferromagnetic liquid flow due to gravity-aligned stretching of an elastic sheet. J. Appl. Fluid Mech. 2015, 8, 591–600. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 2007, 50, 2002–2018. [Google Scholar] [CrossRef]
- Palaniappan, B.; Ramasamy, V. Thermodynamic analysis of fly ash nanofluid for automobile (heavy vehicle) radiators. J. Therm. Anal. Calorim. 2019, 136, 223–233. [Google Scholar] [CrossRef]
- Domkundwar, A.; Domkundwar, V. Heat and Mass Transfer Data Book; Dhanpat Rai: Hisar, India, 2007. [Google Scholar]
- Reddy, J.N. An Introduction to the Finite Element Method; McGraw-Hill Education: New York, NY, USA, 1993. [Google Scholar]
- Swapna, G.; Kumar, L.; Rana, P.; Singh, B. Finite element modeling of a double-diffusive mixed convection flow of a chemically-reacting magneto-micropolar fluid with convective boundary condition. J. Taiwan Inst. Chem. Eng. 2015, 47, 18–27. [Google Scholar] [CrossRef]
- Gupta, D.; Kumar, L.; Beg, O.A.; Singh, B. Finite element analysis of transient heat and mass transfer in mircostructural boundary layer flow from a porous stretching sheet. Comput. Therm. Sci. Int. J. 2014, 6, 155–169. [Google Scholar] [CrossRef]
- Ali, L.; Liu, X.; Ali, B.; Mujeed, S.; Abdal, S. Finite element analysis of thermo-diffusion and multi-slip effects on MHD unsteady flow of casson nano-fluid over a shrinking/stretching sheet with radiation and heat source. Appl. Sci. 2019, 9, 5217. [Google Scholar] [CrossRef] [Green Version]
- Ali, B.; Nie, Y.; Khan, S.A.; Sadiq, M.T.; Tariq, M. Finite element simulation of multiple slip effects on MHD unsteady maxwell nanofluid flow over a permeable stretching sheet with radiation and thermo-diffusion in the presence of chemical reaction. Processes 2019, 7, 628. [Google Scholar] [CrossRef] [Green Version]
- Majeed, A.; Zeeshan, A.; Ellahi, R. Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux. J. Mol. Liq. 2016, 223, 528–533. [Google Scholar] [CrossRef]
- Bachok, N.; Ishak, A.; Nazar, R. Flow and heat transfer over an unsteady stretching sheet in a micropolar fluid. Meccanica 2011, 46, 935–942. [Google Scholar] [CrossRef]
- Qasim, M.; Khan, I.; Shafie, S. Heat transfer in a micropolar fluid over a stretching sheet with Newtonian heating. PLoS ONE 2013, 8, e59393. [Google Scholar] [CrossRef] [Green Version]
- Hussanan, A.; Salleh, M.Z.; Khan, I. Microstructure and inertial characteristics of a magnetite ferrofluid over a stretching/shrinking sheet using effective thermal conductivity model. J. Mol. Liq. 2018, 255, 64–75. [Google Scholar] [CrossRef]
- Kumar, L. Finite element analysis of combined heat and mass transfer in hydromagnetic micropolar flow along a stretching sheet. Comput. Mater. Sci. 2009, 46, 841–848. [Google Scholar] [CrossRef]
Properties | Base Fluid [33] | Ferromagnetic (Fe) [34] | Ferrimagnetic (Fe3O4) [34] |
---|---|---|---|
3752 | 447 | 670 | |
1054 | 7870 | 5180 | |
0.416 | 80.2 | 9.7 |
Number of Elements | ||||
---|---|---|---|---|
40 | 0.191650 | 0.121507 | 0.087617 | 0.000102 |
100 | 0.192679 | 0.121595 | 0.089334 | 0.000101 |
160 | 0.192796 | 0.121602 | 0.089529 | 0.000101 |
240 | 0.192837 | 0.121604 | 0.089598 | 0.000101 |
340 | 0.192853 | 0.121605 | 0.089626 | 0.000101 |
400 | 0.192859 | 0.121606 | 0.089634 | 0.000100 |
480 | 0.192862 | 0.121606 | 0.089639 | 0.000100 |
500 | 0.192863 | 0.121606 | 0.089641 | 0.000100 |
Pr | Liaqat et al. [38] | Bagh et al. [39] | Majeed et al. [40] | Bachok et al. [41] | FEM (Current Results) |
---|---|---|---|---|---|
0.72 | 0.808634 | 0.808634 | 0.808640 | 0.8086 | 0.808634 |
1.00 | 1.000001 | 1.000001 | 1.000000 | 1.0000 | 1.000008 |
3.00 | 1.923678 | 1.923683 | 1.923609 | 1.9237 | 1.923678 |
10.0 | 3.720668 | 3.720674 | 3.720580 | 3.7207 | 3.720668 |
K | Qasim et al. [42] | Abid Hussanan et al. [43] | Kumar [44] | FEM (Current Results) | |
---|---|---|---|---|---|
0.0 | 0.5 | −1.000000 | −1.0000000 | – | −1.0000089 |
1.0 | – | −1.224741 | −1.2247448 | – | −1.2248199 |
2.0 | – | −1.414218 | −1.4142135 | – | −1.4144797 |
4.0 | – | −1.732052 | −1.7320508 | – | −1.7332924 |
0.0 | 0.0 | −1.000000 | – | −1.000008 | −1.0000089 |
1.0 | – | −1.367872 | – | −1.367996 | −1.3679971 |
2.0 | – | −1.621225 | – | −1.621575 | −1.6215754 |
4.0 | – | −2.004133 | – | −2.005420 | −2.0054211 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, L.; Liu, X.; Ali, B.; Mujeed, S.; Abdal, S.; Khan, S.A. Analysis of Magnetic Properties of Nano-Particles Due to a Magnetic Dipole in Micropolar Fluid Flow over a Stretching Sheet. Coatings 2020, 10, 170. https://doi.org/10.3390/coatings10020170
Ali L, Liu X, Ali B, Mujeed S, Abdal S, Khan SA. Analysis of Magnetic Properties of Nano-Particles Due to a Magnetic Dipole in Micropolar Fluid Flow over a Stretching Sheet. Coatings. 2020; 10(2):170. https://doi.org/10.3390/coatings10020170
Chicago/Turabian StyleAli, Liaqat, Xiaomin Liu, Bagh Ali, Saima Mujeed, Sohaib Abdal, and Shahid Ali Khan. 2020. "Analysis of Magnetic Properties of Nano-Particles Due to a Magnetic Dipole in Micropolar Fluid Flow over a Stretching Sheet" Coatings 10, no. 2: 170. https://doi.org/10.3390/coatings10020170
APA StyleAli, L., Liu, X., Ali, B., Mujeed, S., Abdal, S., & Khan, S. A. (2020). Analysis of Magnetic Properties of Nano-Particles Due to a Magnetic Dipole in Micropolar Fluid Flow over a Stretching Sheet. Coatings, 10(2), 170. https://doi.org/10.3390/coatings10020170