A Study of the Optical Properties and Fabrication of Coatings Made of Three-Dimensional Photonic Glass
<p>Silica-based photonic glass with various colors.</p> "> Figure 2
<p>Transmission spectrum for visible light of various colored samples.</p> "> Figure 3
<p>Three-dimensional structure produced by silica nanoparticles observed by SEM.</p> "> Figure 4
<p>Silica nanoparticles observed by TEM.</p> "> Figure 5
<p>Silica particle diameter measured by dynamic light scattering (DLS).</p> "> Figure 6
<p>Microstructures of various structure-colored samples: (<b>a</b>) Blue, (<b>b</b>) green, and (<b>c</b>) red. Sample color is shown in the corner of each image.</p> "> Figure 7
<p>The photographs at various incident angles (0°–45°) for different nanoparticle sizes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Conflicts of Interest
References
- Wang, L.; Zhang, P.; Shi, J.; Hao, Y.; Meng, D.; Zhao, Y.; Yanyan, Y.; Li, D.; Chang, J.; Zhang, Z. Radiofrequency-triggered tumor-targeting delivery system for theranostics application. ACS Appl. Mater. Interfaces 2015, 7, 5736–5747. [Google Scholar] [CrossRef] [PubMed]
- Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.-M.; Mahapatra, C.; Kim, H.-W.; Knowles, J.C. Sol–gel based materials for biomedical applications. Prog. Mater. Sci. 2016, 77, 1–79. [Google Scholar] [CrossRef] [Green Version]
- Kan, C.-w.; Cheung, H.-f.; Chan, Q. A study of plasma-induced ozone treatment on the colour fading of dyed cotton. J. Clean. Prod. 2016, 112, 3514–3524. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, L.; Zhang, G.; Li, Y.; Chai, L.; Fan, Q.; Shao, J. Fabrication of patterned photonic crystals with brilliant structural colors on fabric substrates using ink-jet printing technology. Mater. Des. 2017, 114, 10–17. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, R.; Feng, L.; Zhang, D. Mechanochromic response of the barbules in peacock tail feather. Opt. Mater. 2018, 75, 74–78. [Google Scholar] [CrossRef]
- Vigneron, J.P.; Colomer, J.-F.; Vigneron, N.; Lousse, V. Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera). Phys. Rev. E 2005, 72, 061904. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, S.; Yoshioka, S.; Fujii, Y.; Okamoto, N. Photophysics of structural color in the Morpho butterflies. Forma 2002, 17, 103–121. [Google Scholar]
- Teyssier, J.; Saenko, S.V.; van der Marel, D.; Milinkovitch, M.C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368. [Google Scholar] [CrossRef] [Green Version]
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Qi, L. Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications. Nano Today 2011, 6, 608–631. [Google Scholar] [CrossRef]
- Kuo, W.-K.; Weng, H.-P.; Hsu, J.-J.; Yu, H.H. A bioinspired color-changing polystyrene microarray as a rapid qualitative sensor for methanol and ethanol. Mater. Chem. Phys. 2016, 173, 285–290. [Google Scholar] [CrossRef]
- Pi, M.; Zheng, C.; Bi, R.; Zhao, H.; Liang, L.; Zhang, Y.; Wang, Y.; Tittel, F.K. Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect. Sens. Actuators B: Chem. 2019, 297, 126732. [Google Scholar] [CrossRef]
- Omri, K.; Lahouli, R.; El Mir, L. Microstructure and electrical properties of silica–Zn2SiO4–Mn glass-ceramics as composite for optoelectronic devices. Results Phys. 2019, 12, 2141–2145. [Google Scholar] [CrossRef]
- Song, W.-S.; Kim, J.-H.; Yang, H. Silica-embedded quantum dots as downconverters of light-emitting diode and effect of silica on device operational stability. Mater. Lett. 2013, 111, 104–107. [Google Scholar] [CrossRef]
- Yazdanpanah, M.; Nojavan, S. Polydopamine-assisted attachment of β-cyclodextrin onto iron oxide/silica core-shell nanoparticles for magnetic dispersive solid phase extraction of aromatic molecules from environmental water samples. J. Chromatogr. A 2019, 1601, 9–20. [Google Scholar] [CrossRef] [PubMed]
- El-Hamid, H.K.A.; Radwan, M.M. Influence of nano-silica additions on hydration characteristics and cytotoxicity of calcium aluminate as biomaterial. Heliyon 2019, 5, e02135. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Saha, B.; Bhaumik, S. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure. Exp. Therm. Fluid Sci. 2017, 81, 454–465. [Google Scholar] [CrossRef]
- Perullini, M.; Calcabrini, M.; Jobbágy, M.; Bilmes Sara, A. Alginate/porous silica matrices for the encapsulation of living organisms: Tunable properties for biosensors, modular bioreactors, and bioremediation devices. Open Mater. Sci. 2019, 1, 3–12. [Google Scholar] [CrossRef]
- Huang, C.-L.; Fang, W.; Chen, I.H.; Hung, T.-Y. Manufacture and biomimetic mineral deposition of nanoscale bioactive glasses with mesoporous structures using sol-gel methods. Ceram. Int. 2018, 44, 17224–17229. [Google Scholar] [CrossRef]
- Miklyaev, Y.V.; Meisel, D.C.; Blanco, A.; von Freymann, G.; Busch, K.; Koch, W.; Enkrich, C.; Deubel, M.; Wegener, M. Three-dimensional face-centered-cubic photonic crystal templates by laser holography: Fabrication, optical characterization, and band-structure calculations. Appl. Phys. Lett. 2003, 82, 1284–1286. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; He, J.; Xie, X.; Dou, R.; Lu, X. Photonic crystals with vivid structure color and robust mechanical strength. Dye. Pigment. 2019, 165, 137–143. [Google Scholar] [CrossRef]
- García, P.D.; Sapienza, R.; Blanco, Á.; López, C. Photonic glass: A novel random material for light. Adv. Mater. 2007, 19, 2597–2602. [Google Scholar] [CrossRef]
- García, P.D.; Sapienza, R.; López, C. Photonic glasses: A step beyond white paint. Adv. Mater. 2010, 22, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Shang, G.; Maiwald, L.; Renner, H.; Jalas, D.; Dosta, M.; Heinrich, S.; Petrov, A.; Eich, M. Photonic glass for high contrast structural color. Sci. Rep. 2018, 8, 7804. [Google Scholar] [CrossRef] [PubMed]
- Schertel, L.; Wimmer, I.; Besirske, P.; Aegerter, C.M.; Maret, G.; Polarz, S.; Aubry, G.J. Tunable high-index photonic glasses. Phys. Rev. Mater. 2019, 3, 015203. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Schmedake, T.A.; Tsu, R. A comparative study of colloidal silica spheres: Photonic crystals versus Bragg’s law. Phys. Lett. A 2008, 372, 4517–4520. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, W.; Qin, J.; Han, Z. Terahertz refractive index sensor based on the guided resonance in a photonic crystal slab. Opt. Commun. 2019, 434, 163–166. [Google Scholar] [CrossRef]
- Long, J.; Xu, E.; Li, X.; Wu, Z.; Wang, F.; Xu, X.; Jin, Z.; Jiao, A.; Zhan, X. Effect of chitosan molecular weight on the formation of chitosan–pullulanase soluble complexes and their application in the immobilization of pullulanase onto Fe3O4–κ-carrageenan nanoparticles. Food Chem. 2016, 202, 49–58. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.J.P. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Topçu, G.; Güner, T.; Demir, M.M. Non-iridescent structural colors from uniform-sized SiO2 colloids. Photonics Nanostruct.-Fundam. Appl. 2018, 29, 22–29. [Google Scholar] [CrossRef]
- Arsenault, A.C.; Puzzo, D.P.; Manners, I.; Ozin, G.A. Photonic-crystal full-colour displays. Nat. Photonics 2007, 1, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, K.Q. Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 2013, 13, 4192–4213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauvreau, B.; Guo, N.; Schicker, K.; Stoeffler, K.; Boismenu, F.; Ajji, A.; Wingfield, R.; Dubois, C.; Skorobogatiy, M. Color-changing and color-tunable photonic bandgap fiber textiles. Opt. Express 2008, 16, 15677–15693. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.; Gentle, A.; Arnold, M.; Cortie, M.J.N. Nanophotonics-enabled smart windows, buildings and wearables. Nanophotonics 2016, 5, 55–73. [Google Scholar] [CrossRef] [Green Version]
Sample Color | NH4OH (mL) | H2O (mL) | TEOS (mL) | Ethanol (mL) |
---|---|---|---|---|
Blue | 1 | 9 | 1 | 9 |
Green | 3 | 7 | 1 | 9 |
Red | 5 | 5 | 1 | 9 |
Sample Color | Calculated Diameter (nm) | Intensity Distribution Diameter (nm) | Number Distribution Diameter (nm) | Volume Distribution Diameter (nm) |
---|---|---|---|---|
Blue | 193 | 187 ± 8 | 145 ± 6 | 163 ± 6 |
Green | 238 | 296 ± 17 | 186 ± 35 | 231 ± 16 |
Red | 286 | 280 ± 3 | 288 ± 15 | 251 ± 10 |
Sample Color | Measured Wavelength (nm) | Calculated Wavelength (nm) | Blue Shift (nm) |
---|---|---|---|
Blue | 432 | 418 | 14 |
Green | 532 | 519 | 13 |
Red | 640 | 626 | 14 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-L. A Study of the Optical Properties and Fabrication of Coatings Made of Three-Dimensional Photonic Glass. Coatings 2020, 10, 781. https://doi.org/10.3390/coatings10080781
Huang C-L. A Study of the Optical Properties and Fabrication of Coatings Made of Three-Dimensional Photonic Glass. Coatings. 2020; 10(8):781. https://doi.org/10.3390/coatings10080781
Chicago/Turabian StyleHuang, Chih-Ling. 2020. "A Study of the Optical Properties and Fabrication of Coatings Made of Three-Dimensional Photonic Glass" Coatings 10, no. 8: 781. https://doi.org/10.3390/coatings10080781
APA StyleHuang, C. -L. (2020). A Study of the Optical Properties and Fabrication of Coatings Made of Three-Dimensional Photonic Glass. Coatings, 10(8), 781. https://doi.org/10.3390/coatings10080781