Smart Health-Enhanced Early Mobilisation in Intensive Care Units
<p>An Early Mobilisation scenario in a healthcare facility: patients in blue are undergoing passive mobilisations with the assistance of physical therapists (in green), and patients in red are performing active mobilisations.</p> "> Figure 2
<p>Synthesis of the search, screening and selection methodology.</p> "> Figure 3
<p>The components of a smart-healthcare-enhanced Early Mobilisation system.</p> ">
Abstract
:1. Introduction
1.1. Barriers to Early Mobilisation
- Patient-level barriers: related to patient safety and efficacy of EM (e.g., medical instability, endotrach intubation, obesity, cognitive impairment).
- Institutional-level barriers: such as a lack of equipment or unclear guidelines.
- Provider-level barriers: such as limited staff (issues typically reported by physical therapists), problems in communication and protocol continuity over shift changes.
1.2. The Evolution of Healthcare Paradigms
1.3. Contribution and Plan of the Article
- Q1: Does the relevant literature on EM practice consider the use of technology?
- Q2: Does the literature on ICT include applications to EM?
- Q3: How can technology (e.g., e-health, sensors, robotics, etc.) help overcome barriers to EM practice?
2. Methodology
2.1. Definition of the Review Scope
2.2. Conceptualisation
2.3. Literature Selection
- Set 1. The most recent reviews and surveys on EM that consider/mention technology in their analyses or discussions. The articles in this set will be used to address Q1.
- Set 2. The most-cited contributions on EM that mention the use of technology. The articles in this set will also be used to address Q1.
- Set 3. Original research articles on the application of technology to EM. The articles in this set will be used to address Q2.
= ( = {“early mobili*ation” OR “early rehabilitation”}) AND (={“review” OR “survey”}).
= ( = {“early mobili*ation” OR “early rehabilitation”})
S3 = ( = {(“early mobili*ation” OR “early rehabilitation”) AND (“HAR” OR “human activity recognition” OR “sensors” OR “robotics” OR “software” OR “artificial intelligence”)})
= ( = {“early mobili*ation” OR “early rehabilitation”})
3. Results
3.1. Technology and Early Mobilisation
3.1.1. Neuromuscular Electrical Stimulation
3.1.2. Robotics and Mechatronics
3.1.3. Sensors to Monitor EM Routines
4. Discussion
4.1. Limitations of the Analysed Proposals
4.2. Smart Healthcare-Enhanced Early Mobilisation
4.3. Integrating Proposals from the Rehabilitation Area
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rawal, G.; Yadav, S.; Kumar, R. Post-intensive Care Syndrome: An Overview. J. Transl. Intern. Med. 2017, 5, 90–92. [Google Scholar] [CrossRef] [Green Version]
- Morris, P.E.; Goad, A.; Thompson, C.; Taylor, K.; Harry, B.; Passmore, L.; Ross, A.; Anderson, L.; Baker, S.; Sanchez, M.; et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit. Care Med. 2008, 36, 2238–2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda Rocha, A.R.; Martinez, B.P.; Maldaner da Silva, V.Z.; Forgiarini Junior, L.A. Early mobilization: Why, what for and how? Med. Intensiv. 2017, 41, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Bognar, K.; Chou, J.W.; McCoy, D.; Sexton Ward, A.L.; Hester, J.; Guin, P.; Jena, A.B. Financial Implications of a Hospital Early Mobility Program. Intensive Care Med. Exp. 2015, 3, A758. [Google Scholar] [CrossRef] [Green Version]
- Cameron, S.; Ball, I.; Cepinskas, G.; Choong, K.; Doherty, T.J.; Ellis, C.G.; Martin, C.M.; Mele, T.S.; Sharpe, M.; Shoemaker, J.K.; et al. Early mobilization in the critical care unit: A review of adult and pediatric literature. J. Crit. Care 2015, 30, 664–672. [Google Scholar] [CrossRef] [Green Version]
- Dikkema, Y.; Nieuwenhuis, M.K.; van der Schans, C.P.; Mouton, L.J. Questionnaires to Assess Facilitators and Barriers of Early Mobilization in Critically Ill Patients: Which One to Choose? A Systematic Review. Clin. Nurs. Res. 2020, 30, 442–454. [Google Scholar] [CrossRef]
- Akinremi, A.A.; Ogwu, S.; Sanya, A.O.; Sanusi, A.A.; Osinaike, B. Early Mobilization in the ICU: A Multicenter Survey of Clinicians’ Knowledge, Attitude and Practices in Resource-Limited Hospital Settings. Ann. Med. Health Sci. Res. 2020, 10, 778–784. [Google Scholar]
- Anekwe, D.E.; Koo, K.K.Y.; de Marchie, M.; Goldberg, P.; Jayaraman, D.; Spahija, J. Interprofessional Survey of Perceived Barriers and Facilitators to Early Mobilization of Critically Ill Patients in Montreal, Canada. J. Intensive Care Med. 2017, 34, 218–226. [Google Scholar] [CrossRef]
- Dubb, R.; Nydahl, P.; Hermes, C.; Schwabbauer, N.; Toonstra, A.; Parker, A.M.; Kaltwasser, A.; Needham, D.M. Barriers and Strategies for Early Mobilization of Patients in Intensive Care Units. Ann. Am. Thorac. Soc. 2016, 13, 724–730. [Google Scholar] [CrossRef]
- Phelan, S.; Lin, F.; Mitchell, M.; Chaboyer, W. Implementing early mobilisation in the intensive care unit: An integrative review. Int. J. Nurs. Stud. 2018, 77, 91–105. [Google Scholar] [CrossRef]
- Lang, J.K.; Paykel, M.S.; Haines, K.J.; Hodgson, C.L. Clinical Practice Guidelines for Early Mobilization in the ICU: A Systematic Review. Crit. Care Med. 2020, 48, e1121–e1128. [Google Scholar] [CrossRef]
- Eysenbach, G. What is e-health? J. Med. Internet Res. 2001, 3, e20. [Google Scholar] [CrossRef] [PubMed]
- Ball, M.J.; Lillis, J. E-health: Transforming the physician/patient relationship. Int. J. Med. Inform. 2001, 61, 1–10. [Google Scholar] [CrossRef]
- Istepanian, R.; Laxminarayan, S.; Pattichis, C.S. M-Health: Emerging Mobile Health Systems; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Cechetti, N.P.; Bellei, E.A.; Biduski, D.; Rodriguez, J.P.M.; Roman, M.K.; De Marchi, A.C.B. Developing and implementing a gamification method to improve user engagement: A case study with an m-Health application for hypertension monitoring. Telemat. Inform. 2019, 41, 126–138. [Google Scholar] [CrossRef]
- Batista, E.; Borras, F.; Martinez-Balleste, A. Monitoring people with MCI: Deployment in a real scenario for low-budget smartphones. In Proceedings of the 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA), Corfu, Greece, 6–8 July 2015. [Google Scholar]
- Solanas, A.; Patsakis, C.; Conti, M.; Vlachos, I.; Ramos, V.; Falcone, F.; Postolache, O.; Pérez-Martínez, P.; Pietro, R.; Perrea, D.; et al. Smart health: A context-aware health paradigm within smart cities. IEEE Commun. Mag. 2014, 52, 74–81. [Google Scholar] [CrossRef]
- Patsakis, C.; Papageorgiou, A.; Falcone, F.; Solanas, A. s-health as a driver towards better emergency response systems in urban environments. In Proceedings of the 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, Turin, Italy, 7–9 May 2015. [Google Scholar]
- Casino, F.; Patsakis, C.; Batista, E.; Borràs, F.; Martínez-Ballesté, A. Healthy Routes in the Smart City: A Context-Aware Mobile Recommender. IEEE Softw. 2017, 34, 42–47. [Google Scholar] [CrossRef]
- Solanas, A.; Casino, F.; Batista, E.; Rallo, R. Trends and challenges in smart healthcare research: A journey from data to wisdom. In Proceedings of the 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), Modena, Italy, 11–13 September 2017. [Google Scholar]
- Vom Brocke, J.; Simons, A.; Niehaves, B.; Riemer, K.; Plattfaut, R.; Cleven, A. Reconstructing the Giant: On the Importance of Rigour in Documenting the Literature Search Process. In Proceedings of the 17th European Conference on Information Systems (ECIS), Verona, Italy, 8–10 June 2009; pp. 2206–2217. [Google Scholar]
- Clarissa, C.; Salisbury, L.; Rodgers, S.; Kean, S. Early mobilisation in mechanically ventilated patients: A systematic integrative review of definitions and activities. J. Intensive Care 2019, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nweke, H.F.; Teh, Y.W.; Al-Garadi, M.A.; Alo, U.R. Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 2018, 105, 233–261. [Google Scholar] [CrossRef]
- Aksnes, D.W.; Langfeldt, L.; Wouters, P. Citations, Citation Indicators, and Research Quality: An Overview of Basic Concepts and Theories. SAGE Open 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Mayer, K.P.; Carper, R.A.; Henson, S.C.; Clonce, E.A.; Christian, W.J.; Seif, S.M.; Pastva, A.M.; Needham, D.M.; Morris, P.E. Three-Fourths of ICU Physical Therapists Report Use of Assistive Equipment and Technology in Practice: Results of an International Survey. J. Acute Care Phys. Ther. 2020, 12, 21–30. [Google Scholar] [CrossRef]
- Needham, D.M.; Truong, A.D.; Fan, E. Technology to enhance physical rehabilitation of critically ill patients. Crit. Care Med. 2009, 37, S436–S441. [Google Scholar] [CrossRef]
- Wittmer, V.L.; Paro, F.M.; Duarte, H.; Capellini, V.K.; Barbalho-Moulim, M.C. Early mobilization and physical exercise in patients with COVID-19: A narrative literature review. Complement. Ther. Clin. Pract. 2021, 43, 101364. [Google Scholar] [CrossRef]
- Goodwin, V.A.; Allan, L.; Bethel, A.; Cowley, A.; Cross, J.L.; Day, J.; Drummond, A.; Hall, A.J.; Howard, M.; Morley, N.; et al. Rehabilitation to enable recovery from COVID-19: A rapid systematic review. Physiotherapy 2021, 111, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Atashzar, S.F.; Carriere, J.; Tavakoli, M. Review: How Can Intelligent Robots and Smart Mechatronic Modules Facilitate Remote Assessment, Assistance, and Rehabilitation for Isolated Adults With Neuro-Musculoskeletal Conditions? Front. Robot. AI 2021, 8, 610529. [Google Scholar] [CrossRef]
- Zayed, Y.; Kheiri, B.; Barbarawi, M.; Chahine, A.; Rashdan, L.; Chintalapati, S.; Bachuwa, G.; Al-Sanouri, I. Effects of neuromuscular electrical stimulation in critically ill patients: A systematic review and meta-analysis of randomised controlled trials. Aust. Crit. Care 2020, 33, 203–210. [Google Scholar] [CrossRef]
- Selves, C.; Stoquart, G.; Lejeune, T. Gait rehabilitation after stroke: Review of the evidence of predictors, clinical outcomes and timing for interventions. Acta Neurol. Belg. 2020, 120, 783–790. [Google Scholar] [CrossRef]
- Schwab, K.E.; To, A.Q.; Chang, J.; Ronish, B.; Needham, D.M.; Martin, J.L.; Kamdar, B.B. Actigraphy to Measure Physical Activity in the Intensive Care Unit: A Systematic Review. J. Intensive Care Med. 2019, 35, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.N.L.; Gravesande, J.; Rotella, S.; Wu, S.S.; Topp-Nguyen, N.; Kho, M.E.; Harris, J.E.; Fox-Robichaud, A.; Solomon, P. Physiotherapy in the neurotrauma intensive care unit: A scoping review. J. Crit. Care 2018, 48, 390–406. [Google Scholar] [CrossRef] [PubMed]
- Greening, N.J.; Williams, J.E.A.; Hussain, S.F.; Harvey-Dunstan, T.C.; Bankart, M.J.; Chaplin, E.J.; Vincent, E.E.; Chimera, R.; Morgan, M.D.; Singh, S.J.; et al. An early rehabilitation intervention to enhance recovery during hospital admission for an exacerbation of chronic respiratory disease: Randomised controlled trial. BMJ 2014, 349, g4315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, H.; Ward, K.R.; Krishnan, C.; Epureanu, B.I. Effect of Multi-Frequency Whole-Body Vibration on Muscle Activation, Metabolic Cost and Regional Tissue Oxygenation. IEEE Access 2020, 8, 140445–140455. [Google Scholar] [CrossRef]
- Demrozi, F.; Pravadelli, G.; Tighe, P.J.; Bihorac, A.; Rashidi, P. Joint Distribution and Transitions of Pain and Activity in Critically Ill Patients. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 4534–4538. [Google Scholar]
- Martínez-Ballesté, A.; Gimeno, P.; Mariné, A.; Batista, E.; Solanas, A. e-PEMICU: An e-Health Platform to Support Early Mobilisation in Intensive Care Units. In Proceedings of the 10th International Conference on Information, Intelligence, Systems and Applications (IISA), Patras, Greece, 15–17 July 2019; pp. 1–6. [Google Scholar]
- Haddara, R.; Zhou, Y.; Chinchalkar, S.; Trejos, A.L. Postoperative healing patterns in elbow using electromyography: Towards the development of a wearable mechatronic elbow brace. In Proceedings of the International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1395–1400. [Google Scholar]
- Tafreshi, A.S.; Klamroth-Marganska, V.; Nussbaumer, S.; Riener, R. Real-Time Closed-Loop Control of Human Heart Rate and Blood Pressure. IEEE Trans. Biomed. Eng. 2015, 62, 1434–1442. [Google Scholar] [CrossRef]
- Colombo, G.; Schreier, R.; Mayr, A.; Plewa, H.; Rupp, R. Novel Tilt Table with Integrated Robotic Stepping Mechanism: Design Principles and Clinical Application. In Proceedings of the 9th International Conference on Rehabilitation Robotics (ICORR), Chicago, IL, USA, 28 June–1 July 2005; pp. 227–230. [Google Scholar]
- Tsukamoto, S.; Higashi, Y.; Nambu, M.; Sekine, M.; Nakajima, K.; Tamura, T. Visualization of transfer motion based on accelerometry data in the hemiplegic patients. In Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society & Engineering in Medicine and Biology, Houston, TX, USA, 23–26 October 2002; pp. 2457–2458. [Google Scholar]
- Nakajima, K.; Tamura, T.; Lu, L.; Miike, H.; Kasaoka, S.; Nakashima, K.; Maekawa, T.; Togawa, T. Evaluation of bed rest using a bed temperature monitor after acute myocardial infarction. In Proceedings of the 17th International Conference of the Engineering in Medicine and Biology Society (EMBC), Montreal, QC, Canada, 20–23 September 1995; Volume 1, pp. 689–690. [Google Scholar]
- Polastri, M.; Brini, S.; Ghetti, A.; Lama, A. Recommendations from scientific/professional societies: An essential support for physiotherapy in patients with COVID-19. Int. J. Ther. Rehabil. 2020, 27, 1–3. [Google Scholar] [CrossRef]
- Iannaccone, S.; Castellazzi, P.; Tettamanti, A.; Houdayer, E.; Brugliera, L.; de Blasio, F.; Cimino, P.; Ripa, M.; Meloni, C.; Alemanno, F.; et al. Role of Rehabilitation Department for Adult Individuals With COVID-19: The Experience of the San Raffaele Hospital of Milan. Arch. Phys. Med. Rehabil. 2020, 101, 1656–1661. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Baldwin, C.; Bissett, B.; Boden, I.; Gosselink, R.; Granger, C.L.; Hodgson, C.; Jones, A.Y.; Kho, M.E.; Moses, R.; et al. Physiotherapy management for COVID-19 in the acute hospital setting: Clinical practice recommendations. J. Physiother. 2020, 66, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Ceravolo, M.G.; Arienti, C.; de Sire, A.; Andrenelli, E.; Negrini, F.; Lazzarini, S.G.; Patrini, M.; Negrini, S.; The International Multiprofessional Steering Committee of Cochrane Rehabilitation REH-COVER Action. Rehabilitation and COVID-19: The Cochrane Rehabilitation 2020 rapid living systematic review. Eur. J. Phys. Rehabil. Med. 2020, 56, 642–651. [Google Scholar] [PubMed]
- Stylianides, N.; Dikaiakos, M.D.; Gjermundrød, H.; Panayi, G.; Kyprianou, T. Intensive Care Window: Real-Time Monitoring and Analysis in the Intensive Care Environment. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Ortiz de Lejarazu, A.; López-Iturri, P.; Aguirre, E.; Azpilicueta, L.; Falcone, F.; Casino, F.; Solanas, A. Challenges in the implementation of context-aware scenarios within emergency rooms. In Proceedings of the 6th International Conference on Information, Intelligence, Systems and Applications (IISA), Corfu, Greece, 6–8 July 2015; pp. 1–4. [Google Scholar]
- Casino, F.; López-Iturri, P.; Aguirre, E.; Azpilicueta, L.; Falcone, F.; Batista, E.; Solanas, A. Two-dimensional collaborative filtering approach to wireless channel characterization in medical complex scenarios. In Proceedings of the IEEE International Smart Cities Conference (ISC2), Trento, Italy, 12–15 September 2016; pp. 1–6. [Google Scholar]
- Kang, J.J.; Dibaei, M.; Luo, G.; Yang, W.; Zheng, X. A Privacy-Preserving Data Inference Framework for Internet of Health Things Networks. In Proceedings of the IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China, 29 December 2020–1 January 2021; pp. 1209–1214. [Google Scholar]
- Coban, C.; Tuysuz, M.F. E-Health and Privacy: Risks, Opportunities and Solutions. In Proceedings of the 4th International Conference on Computer Science and Engineering (UBMK), Samsun, Turkey, 11–15 September 2019; pp. 554–559. [Google Scholar]
- Zhang, Y.; Zheng, D.; Deng, R.H. Security and Privacy in Smart Health: Efficient Policy-Hiding Attribute-Based Access Control. IEEE Internet Things J. 2018, 5, 2130–2145. [Google Scholar] [CrossRef]
- Halpern, N.A. Innovative Designs for the Smart ICU. Chest 2014, 145, 646–658. [Google Scholar] [CrossRef]
- Koller-Hodac, A.; Leonardo, D.; Walpen, S.; Felder, D. A novel robotic device for knee rehabilitation improved physical therapy through automated process. In Proceedings of the 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, 26–29 September 2010; pp. 820–824. [Google Scholar]
- Low, F.Z.; Lim, J.H.; Kapur, J.; Yeow, R.C.H. Effect of a Soft Robotic Sock Device on Lower Extremity Rehabilitation Following Stroke: A Preliminary Clinical Study With Focus on Deep Vein Thrombosis Prevention. IEEE J. Transl. Eng. Health Med. 2019, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhao, L.; Yu, P.; Yang, T.; Li, N.; Yang, Y.; Liu, L. A Wearable Bionic Soft Exoskeleton Glove for Stroke Patients. In Proceedings of the IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Tianjin, China, 19–23 July 2018; pp. 932–937. [Google Scholar]
- Petersen, I.L.; Nowakowska, W.; Ulrich, C.; Struijk, L.N.S.A. A Novel sEMG Triggered FES-Hybrid Robotic Lower Limb Rehabilitation System for Stroke Patients. IEEE Trans. Med Robot. Bionics 2020, 2, 631–638. [Google Scholar] [CrossRef]
- Pittaccio, S.; Garavaglia, L.; Molteni, E.; Guanziroli, E.; Zappasodi, F.; Beretta, E.; Strazzer, S.; Molteni, F.; Villa, E.; Passaretti, F. Can passive mobilization provide clinically-relevant brain stimulation? A pilot eeg and nirs study on healthy subjects. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 3547–3550. [Google Scholar]
- Fang, Q.; Mahmoud, S.S.; Kumar, A.; Gu, X.; Fu, J. A Longitudinal Investigation of the Efficacy of Supported In-Home Post-Stroke Rehabilitation. IEEE Access 2020, 8, 138690–138700. [Google Scholar] [CrossRef]
- Ayoade, M.; Baillie, L. A novel knee rehabilitation system for the home. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014; pp. 2521–2530. [Google Scholar]
- Cheng, X.; Mei, X.; Hu, Y.; Fang, Y.; Wu, S.; You, F.; Kuang, S. Development of an E-Health App for Lower Limb Postoperative Rehabilitation Based on Plantar Pressure Analysis. Appl. Sci. 2018, 8, 766. [Google Scholar] [CrossRef] [Green Version]
- Agyeman, M.O.; Al-Mahmood, A.; Hoxha, I. A Home Rehabilitation System Motivating Stroke Patients with Upper and/or Lower Limb Disability. In Proceedings of the 3rd International Symposium on Computer Science and Intelligent Control, Amsterdam, The Netherlands, 25–27 September 2019; pp. 1–6. [Google Scholar]
- Jayasree-Krishnan, V.; Gamdha, D.; Goldberg, B.S.; Ghosh, S.; Raghavan, P.; Kapila, V. A Novel Task-Specific Upper-Extremity Rehabilitation System with Interactive Game-Based Interface for Stroke Patients. In Proceedings of the International Symposium on Medical Robotics (ISMR), Atlanta, GA, USA, 3–5 April 2019; pp. 1–7. [Google Scholar]
- Steffen, D.; Muhm, M.; Christmann, C.; Bleser, G. A usability evaluation of a mobile exergame for ankle joint exercises. In Proceedings of the IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH), Vienna, Austria, 16–18 May 2018; pp. 1–8. [Google Scholar]
- Du, Z.; Sun, Y.; Su, Y.; Dong, W. A ROS/Gazebo based method in developing virtual training scene for upper limb rehabilitation. In Proceedings of the IEEE International Conference on Progress in Informatics and Computing, Shanghai, China, 16–18 May 2014; pp. 307–311. [Google Scholar]
- Rutkowski, S.; Buekers, J.; Rutkowska, A.; Cieślik, B.; Szczegielniak, J. Monitoring Physical Activity with a Wearable Sensor in Patients with COPD during In-Hospital Pulmonary Rehabilitation Program: A Pilot Study. Sensors 2021, 21, 2742. [Google Scholar] [CrossRef]
- Monaco, V.; Galardi, G.; Coscia, M.; Martelli, D.; Micera, S. Design and Evaluation of NEUROBike: A Neurorehabilitative Platform for Bedridden Post-Stroke Patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 845–852. [Google Scholar] [CrossRef] [PubMed]
Set | Title | Year | Citations | NES | Robotics | Sensors |
---|---|---|---|---|---|---|
Set 1. Surveys on EM mentioning technology | Early mobilization and physical exercise in patients with COVID-19: A narrative literature review [27] | 2021 | 0 | • | • | |
Rehabilitation to enable recovery from COVID-19: a rapid systematic review [28] | 2021 | 0 | • | |||
Review: How Can Intelligent Robots and Smart Mechatronic Modules Facilitate Remote Assessment, Assistance, and Rehabilitation for Isolated Adults With Neuro-Musculoskeletal Conditions? [29] | 2021 | 0 | • | |||
Three-Fourths of ICU Physical Therapists Report the Use of Assistive Equipment and Technology in Practice: Results of an International Survey [25] | 2021 | 0 | ||||
The effects of neuromuscular electrical stimulation in critically ill patients: A systematic review and meta-analysis of randomised controlled trials [30] | 2020 | 6 | • | |||
Gait rehabilitation after stroke: review of the evidence of predictors, clinical outcomes and timing for interventions [31] | 2020 | 3 | • | |||
Actigraphy to Measure Physical Activity in the Intensive Care Unit: A Systematic Review [32] | 2019 | 8 | • | |||
Physiotherapy in the neurotrauma intensive care unit: A scoping review [33] | 2018 | 4 | • | |||
Set 2. The most-cited contributions on EM that mention the use of technology. | An early rehabilitation intervention to enhance recovery during hospital admission for an exacerbation of chronic respiratory disease: Randomised controlled trial [34] | 2014 | 144 | • | ||
Technology to enhance physical rehabilitation of critically ill patients [26] | 2009 | 127 | ||||
Set 3. Original research articles on the application of technology to EM | The Effect of Multi-Frequency Whole-Body Vibration on Muscle Activation, Metabolic Cost and Regional Tissue Oxygenation [35] | 2020 | 0 | • | ||
Joint Distribution and Transitions of Pain and Activity in Critically Ill Patients [36] | 2020 | 0 | • | |||
e-PEMICU: an e-Health Platform to Support Early Mobilisation in Intensive Care Units [37] | 2019 | 1 | • | |||
Postoperative healing patterns in elbow using electromyography: Towards the development of a wearable mechatronic elbow brace [38] | 2017 | 1 | • | |||
Real-Time Closed-Loop Control of Human Heart Rate and Blood Pressure [39] | 2015 | 11 | • | |||
Novel tilt table with integrated robotic stepping mechanism: design principles and clinical application [40] | 2005 | 14 | • | |||
Visualization of transfer motion based on accelerometry data in the hemiplegic patients [41] | 2002 | 0 | • | |||
Evaluation of bed rest using a bed temperature monitor after acute myocardial infarction [42] | 1995 | 1 | • |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferre, M.; Batista, E.; Solanas, A.; Martínez-Ballesté, A. Smart Health-Enhanced Early Mobilisation in Intensive Care Units. Sensors 2021, 21, 5408. https://doi.org/10.3390/s21165408
Ferre M, Batista E, Solanas A, Martínez-Ballesté A. Smart Health-Enhanced Early Mobilisation in Intensive Care Units. Sensors. 2021; 21(16):5408. https://doi.org/10.3390/s21165408
Chicago/Turabian StyleFerre, Maria, Edgar Batista, Agusti Solanas, and Antoni Martínez-Ballesté. 2021. "Smart Health-Enhanced Early Mobilisation in Intensive Care Units" Sensors 21, no. 16: 5408. https://doi.org/10.3390/s21165408
APA StyleFerre, M., Batista, E., Solanas, A., & Martínez-Ballesté, A. (2021). Smart Health-Enhanced Early Mobilisation in Intensive Care Units. Sensors, 21(16), 5408. https://doi.org/10.3390/s21165408