Abstract
The recovery of walking capacity is one of the main aims in stroke rehabilitation. Being able to predict if and when a patient is going to walk after stroke is of major interest in terms of management of the patients and their family’s expectations and in terms of discharge destination and timing previsions. This article reviews the recent literature regarding the predictive factors for gait recovery and the best recommendations in terms of gait rehabilitation in stroke patients. Trunk control and lower limb motor control (e.g. hip extensor muscle force) seem to be the best predictors of gait recovery as shown by the TWIST algorithm, which is a simple tool that can be applied in clinical practice at 1 week post-stroke. In terms of walking performance, the 6-min walking test is the best predictor of community ambulation. Various techniques are available for gait rehabilitation, including treadmill training with or without body weight support, robotic-assisted therapy, virtual reality, circuit class training and self-rehabilitation programmes. These techniques should be applied at specific timing during post-stroke rehabilitation, according to patient’s functional status.
Similar content being viewed by others
References
Stevens E, Emmett E, Wang Y, McKevitt C, Wolfe C (2018) The burden of stroke in Europe, report. Division of Health and Social Care Research, King’s College London, London
Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS (1995) Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil 76(1):27–32
Harvey RL (2015) Predictors of functional outcome following stroke. Phys Med Rehabil Clin N Am 26(4):583–598
WHO (2007) International Classification of Functioning, Disability, and Health: Children & Youth Version: ICF-CY. World Health Organization
Kinoshita S, Abo M, Okamoto T, Tanaka N (2017) Utility of the revised version of the ability for basic movement scale in predicting ambulation during rehabilitation in poststroke patients. J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc 26(8):1663–1669
KNGF (2014) KNGF guidelines: stroke. Royal Dutch Society for Physical Therapy (Koninklijk Nederlands Genootschap voor Fysiotherapie, KNGF)
Holsbeeke L, Ketelaar M, Schoemaker MM, Gorter JW (2009) Capacity, capability, and performance: different constructs or three of a kind? Arch Phys Med Rehabil 90(5):849–855
Perry J, Garrett M, Gronley JK, Mulroy SJ (1995) Classification of walking handicap in the stroke population. Stroke 26(6):982–989
Smith MC, Barber PA, Stinear CM (2017) The TWIST algorithm predicts time to walking independently after stroke. Neurorehabil Neural Repair 31(10–11):955–964
Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC et al (2016) Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 47(6):e98–e169
Platz T (2019) Evidence-based guidelines and clinical pathways in stroke rehabilitation—an international perspective. Front Neurol 10:200
Kollen B, Kwakkel G, Lindeman E (2006) Longitudinal robustness of variables predicting independent gait following severe middle cerebral artery stroke: a prospective cohort study. Clin Rehabil 20(3):262–326
Veerbeek JM, Van Wegen EE, Harmeling-Van der Wel BC, Kwakkel G (2011) Is accurate prediction of gait in nonambulatory stroke patients possible within 72 hours poststroke? The EPOS study. Neurorehabil Neural Repair 25(3):268–274
Stinear CM, Byblow WD, Ward SH (2014) An update on predicting motor recovery after stroke. Ann Phys Rehabil Med 57(8):489–498
Collin C, Wade D (1990) Assessing motor impairment after stroke: a pilot reliability study. J Neurol Neurosurg Psychiatry 53(7):576–579
Fulk GD, He Y, Boyne P, Dunning K (2017) Predicting home and community walking activity poststroke. Stroke 48(2):406–411
Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, Nadeau SE et al (2011) Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med 364(21):2026–2036
Kluding PM, Dunning K, O’Dell MW, Wu SS, Ginosian J, Feld J et al (2013) Foot drop stimulation versus ankle foot orthosis after stroke: 30-week outcomes. Stroke 44(6):1660–1669
Tudor-Locke C, Bassett DR Jr (2004) How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med (Auckl NZ) 34(1):1–8
Friedman PJ (1990) Gait recovery after hemiplegic stroke. Int Disabil Stud 12(3):119–122
Bland MD, Sturmoski A, Whitson M, Connor LT, Fucetola R, Huskey T et al (2012) Prediction of discharge walking ability from initial assessment in a stroke inpatient rehabilitation facility population. Arch Phys Med Rehabil 93(8):1441–1447
Jones PS, Pomeroy VM, Wang J, Schlaug G, Tulasi Marrapu S, Geva S et al (2016) Does stroke location predict walk speed response to gait rehabilitation? Hum Brain Mapp 37(2):689–703
Yelnik AP, Quintaine V, Andriantsifanetra C, Wannepain M, Reiner P, Marnef H et al (2017) AMOBES (Active Mobility Very Early After Stroke): a randomized controlled trial. Stroke 48(2):400–405
Bernhardt J, Langhorne P, Lindley RI, Thrift AG, Ellery F, Collier J et al (2015) Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet (Lond Engl) 386(9988):46–55
Stroke Foundation (2019) Clinical Guidelines for Stroke Management. Melbourne Australia
Mehrholz J, Thomas S, Elsner B (2017) Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD002840.pub3
Flansbjer UB, Holmback AM, Downham D, Patten C, Lexell J (2005) Reliability of gait performance tests in men and women with hemiparesis after stroke. J Rehabil Med 37(2):75–82
Perera S, Mody SH, Woodman RC, Studenski SA (2006) Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc 54(5):743–749
Eng JJ, Dawson AS, Chu KS (2004) Submaximal exercise in persons with stroke: test–retest reliability and concurrent validity with maximal oxygen consumption. Arch Phys Med Rehabil 85(1):113–118
Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B (2017) Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006185.pub3
de Rooij IJ, van de Port IG, Meijer JG (2016) Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. Phys Ther 96(12):1905–1918
Cohen J (2013) Statistical power analysis for the behavioral sciences. Routledge, London
Faraone SV (2008) Interpreting estimates of treatment effects: implications for managed care. P T Peer Rev J Formul Manag 33(12):700–711
English C, Hillier SL, Lynch EA (2017) Circuit class therapy for improving mobility after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD007513.pub2
Aaslund MK, Moe-Nilssen R, Gjelsvik BB, Bogen B, Naess H, Hofstad H et al (2017) A longitudinal study investigating how stroke severity, disability, and physical function the first week post-stroke are associated with walking speed six months post-stroke. Physiother Theory Pract 33(12):932–942
Cumming TB, Thrift AG, Collier JM, Churilov L, Dewey HM, Donnan GA et al (2011) Very early mobilization after stroke fast-tracks return to walking: further results from the phase II AVERT randomized controlled trial. Stroke 42(1):153–158
de Rooij IJM, van de Port IGL, Visser-Meily JMA, Meijer JG (2019) Virtual reality gait training versus non-virtual reality gait training for improving participation in subacute stroke survivors: study protocol of the ViRTAS randomized controlled trial. Trials 20(1):89
Cook DJ, Mulrow CD, Haynes RB (1998) Systematic reviews: synthesis of best evidence for clinical decisions. Ann Intern Med 126(5):376–380
Rother ET (2007) Systematic literature review × narrative review. Acta Paul Enferm 20:v–vi
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflict of interest to declare.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Selves, C., Stoquart, G. & Lejeune, T. Gait rehabilitation after stroke: review of the evidence of predictors, clinical outcomes and timing for interventions. Acta Neurol Belg 120, 783–790 (2020). https://doi.org/10.1007/s13760-020-01320-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13760-020-01320-7