Detection of Oil Spill in SAR Image Using an Improved DeepLabV3+
<p>Structure of SAR image oil spill detection model.</p> "> Figure 2
<p>Structure of the scSE module.</p> "> Figure 3
<p>Structure of scSE–MobileNetV2: (<b>a</b>) Inverted residual block with a stride of 1; (<b>b</b>) Inverted residual block with a stride of 2.</p> "> Figure 4
<p>Structure of scSE–ASPP.</p> "> Figure 5
<p>Oil spill SAR images from the ALOS satellite: (<b>a</b>) with filename 10777_sat in dataset; (<b>b</b>) with filename 10794_sat; (<b>c</b>) with filename 11148_sat; (<b>d</b>) with filename 11064_sat; (<b>e</b>) with filename 11168_sat.</p> "> Figure 6
<p>Prediction results of different backbone networks in the Gulf of Mexico oil spill area: (<b>a</b>) SAR image; (<b>b</b>) Ground truth; (<b>c</b>) Xception–DeepLabV3+ model; (<b>d</b>) MobileNetV2–DeepLabV3+ model.</p> "> Figure 7
<p>Prediction results of different backbone networks in the Persian Gulf oil spill area: (<b>a</b>) SAR image; (<b>b</b>) Ground truth; (<b>c</b>) Xception–DeepLabV3+ model; (<b>d</b>) MobileNetV2–DeepLabV3+ model.</p> "> Figure 8
<p>Prediction results of different models in the Gulf of Mexico oil spill area: (<b>a</b>) SAR image; (<b>b</b>) Ground truth; (<b>c</b>) ABCNet; (<b>d</b>) CGNet; (<b>e</b>) DFANet; (<b>f</b>) LEDNet; (<b>g</b>) MANet; (<b>h</b>) UNet; (<b>i</b>) Ours.</p> "> Figure 9
<p>Prediction results of different models in the Persian Gulf oil spill area: (<b>a</b>) SAR image; (<b>b</b>) Ground truth; (<b>c</b>) ABCNet; (<b>d</b>) CGNet; (<b>e</b>) DFANet; (<b>f</b>) LEDNet; (<b>g</b>) MANet; (<b>h</b>) UNet; (<b>i</b>) Ours.</p> ">
Abstract
:1. Introduction
2. SAR Image Sea Surface Oil Spill Detection Model
2.1. Encoder
2.1.1. scSE Module
2.1.2. scSE–MobileNetV2
2.1.3. scSE–ASPP
2.2. Decoder
2.3. Joint Loss Function
3. Experimentation and Analysis
3.1. Experiment Configuration and Hyperparameter Setting
3.2. Evaluation Metrics
3.3. Results and Analysis
3.3.1. Comparative Experiments on Different Backbone Networks
3.3.2. Comparative Experiments with Different Models
3.3.3. Ablation Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.-T.; Chang, L.; Wang, J.-H. Full-Scale Aggregated MobileUNet: An Improved U-Net Architecture for SAR Oil Spill Detection. Sensors 2024, 24, 3724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zeng, T.; Zhang, X. Synthetic Aperture Radar (SAR) Meets Deep Learning. Remote Sens. 2023, 15, 303. [Google Scholar] [CrossRef]
- Topouzelis, K.N. Oil spill detection by SAR images: Dark formation detection, feature extraction and classification algorithms. Sensors 2008, 8, 6642–6659. [Google Scholar] [CrossRef]
- Alpers, W.; Hühnerfuss, H. The damping of ocean waves by surface films: A new look at an old problem. J. Geophys. Res. Ocean. 1989, 94, 6251–6265. [Google Scholar] [CrossRef]
- Al-Ruzouq, R.; Gibril, M.B.A.; Shanableh, A.; Kais, A.; Hamed, O.; Al-Mansoori, S.; Khalil, M.A. Sensors, features, and machine learning for oil spill detection and monitoring: A review. Remote Sens. 2020, 12, 3338. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Basit, A.; Siddique, M.A.; Sarfraz, M.S. Deep Learning Based Oil Spill Classification Using Unet Convolutional Neural Network. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 3491–3494. [Google Scholar]
- Bianchi, F.M.; Espeseth, M.M.; Borch, N. Large-Scale Detection and Categorization of Oil Spills from SAR Images with Deep Learning. Remote Sens. 2020, 12, 2260. [Google Scholar] [CrossRef]
- Xu, Q.; Zheng, J.; Cheng, Y.; Zhang, S.; Chen, M.; Huang, Q. Detection of Marine Oil Spills from SAR Images Using Artificial Neural Networks. In Proceedings of the 26th International Ocean and Polar Engineering Conference, Rhodes, Greece, 26 June–21 July 2016. [Google Scholar]
- Song, D.; Ding, Y.; Li, X.; Zhang, B.; Xu, M. Ocean oil spill classification with RADARSAT-2 SAR based on an optimized wavelet neural network. Remote Sens. 2017, 9, 799. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Krestenitis, M.; Orfanidis, G.; Ioannidis, K.; Avgerinakis, K.; Vrochidis, S.; Kompatsiaris, I. Oil spill identification from satellite images using deep neural networks. Remote Sens. 2019, 11, 1762. [Google Scholar] [CrossRef]
- Zeng, K.; Wang, Y. A Deep Convolutional Neural Network for Oil Spill Detection from Spaceborne SAR Images. Remote Sens. 2020, 12, 1015. [Google Scholar] [CrossRef]
- Shaban, M.; Salim, R. A Deep-Learning Framework for the Detection of Oil Spills from SAR Data. Sensors 2021, 21, 2351. [Google Scholar] [CrossRef]
- Seydi, S.T.; Hasanlou, M.; Amani, M.; Huang, W. Oil Spill Detection Based on Multiscale Multidimensional Residual CNN for Optical Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10941–10952. [Google Scholar] [CrossRef]
- Li, L.; Han, L.; Ding, M.; Cao, H.; Hu, H. A deep learning semantic template matching framework for remote sensing image registration. ISPRS J. Photogramm. Remote Sens. 2021, 181, 205–217. [Google Scholar] [CrossRef]
- Wang, D.; Wan, J.; Liu, S.; Chen, Y.; Yasir, M.; Xu, M.; Ren, P. BO-DRNet: An improved deep learning model for oil spill detection by polarimetric features from SAR images. Remote Sens. 2022, 14, 264. [Google Scholar] [CrossRef]
- Fan, J.; Liu, C. Multitask gans for oil spill classification and semantic segmentation based on sar images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2532–2546. [Google Scholar] [CrossRef]
- Li, C.; Yang, Y.; Yang, X.; Chu, D.; Cao, W. A Novel Multi-Scale Feature Map Fusion for Oil Spill Detection of SAR Remote Sensing. Remote Sens. 2024, 16, 1684. [Google Scholar] [CrossRef]
- Espeseth, M.M.; Skrunes, S.; Jones, C.E.; Brekke, C.; Holt, B.; Doulgeris, A.P. Analysis of evolving oil spills in full-polarimetric and hybrid-polarity SAR. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4190–4210. [Google Scholar] [CrossRef]
- Migliaccio, M.; Nunziata, F.; Buono, A. SAR polarimetry for sea oil slick observation. Int. J. Remote Sens. 2015, 36, 3243–3273. [Google Scholar] [CrossRef]
- Roy, A.G.; Navab, N.; Wachinger, C. Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, 16–20 September 2018; pp. 421–429. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.-A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- Zhu, Q.; Zhang, Y.; Li, Z.; Yan, X.; Guan, Q.; Zhong, Y.; Zhang, L.; Li, D. Oil spill contextual and boundary-supervised detection network based on marine SAR images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–10. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014. [Google Scholar] [CrossRef]
- Fracastoro, G.; Magli, E.; Poggi, G.; Scarpa, G.; Valsesia, D.; Verdoliva, L. Deep learning methods for synthetic aperture radar image despeckling: An overview of trends and perspectives. IEEE Geosci. Remote Sens. Mag. 2021, 9, 29–51. [Google Scholar] [CrossRef]
- Hu, X.; Chu, L.; Pei, J.; Liu, W.; Bian, J. Model complexity of deep learning: A survey. Knowl. Inf. Syst. 2021, 63, 2585–2619. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Shen, C.; He, T.; Jin, L.; Wang, L. Abcnet: Real-time scene text spotting with adaptive bezier-curve network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9809–9818. [Google Scholar]
- Wu, T.; Tang, S.; Zhang, R.; Cao, J.; Zhang, Y. Cgnet: A light-weight context guided network for semantic segmentation. IEEE Trans. Image Process. 2020, 30, 1169–1179. [Google Scholar] [CrossRef]
- Li, H.; Xiong, P.; Fan, H.; Sun, J. Dfanet: Deep feature aggregation for real-time semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9522–9531. [Google Scholar]
- Wang, Y.; Zhou, Q.; Liu, J.; Xiong, J.; Gao, G.; Wu, X.; Latecki, L.J. Lednet: A lightweight encoder-decoder network for real-time semantic segmentation. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1860–1864. [Google Scholar]
- Li, R.; Zheng, S.; Zhang, C.; Duan, C.; Su, J.; Wang, L.; Atkinson, P.M. Multiattention network for semantic segmentation of fine-resolution remote sensing images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–13. [Google Scholar] [CrossRef]
- Wang, D.; Song, S.; Yang, J.; Xu, M.; Song, D.; Guo, J.; Wan, J.; Liu, S. Marine oil spill detection using improved polarimetric feature based on polarization SAR image. Int. J. Remote Sens. 2024, 45, 911–929. [Google Scholar] [CrossRef]
- Liao, L.; Zhao, Q.; Song, W. Monitoring of Oil Spill Risk in Coastal Areas Based on Polarimetric SAR Satellite Images and Deep Learning Theory. Sustainability 2023, 15, 14504. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, V.; Panigrahi, R.K.; Martorella, M. Application of Hybrid-pol SAR in Oil-spill Detection. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
Model | mIOU (%) | F1-Score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
Xception–DeepLabV3+ | 52.22 | 69.98 | 65.62 | 75.02 |
MobileNetV2–DeepLabV3+ | 76.72 | 86.23 | 84.58 | 87.76 |
Model | mIOU (%) | F1-Score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
Xception–DeepLabV3+ | 43.92 | 63.05 | 62.45 | 63.08 |
MobileNetV2–DeepLabV3+ | 78.34 | 87.74 | 87.46 | 88.05 |
Model | Total Parameters (M) | Total Memory (MB) | Total Flops (G) |
---|---|---|---|
Xception–DeepLabV3+ | 54.71 | 208.70 | 19.42 |
MobileNetV2–DeepLabV3+ | 5.82 | 22.18 | 6.15 |
Model | mIOU (%) | F1-Score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
ABCNet | 78.54 | 87.67 | 85.19 | 90.30 |
CGNet | 78.56 | 87.62 | 85.40 | 89.97 |
DFANet | 78.22 | 87.20 | 86.15 | 88.29 |
LEDNet | 76.49 | 86.27 | 83.76 | 88.94 |
MANet | 78.65 | 87.76 | 85.21 | 90.46 |
UNet | 77.20 | 86.51 | 85.28 | 87.76 |
Ours | 80.26 | 88.66 | 87.04 | 90.40 |
Model | mIOU (%) | F1-Score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
ABCNet | 79.31 | 88.52 | 87.69 | 89.36 |
CGNet | 80.15 | 88.83 | 88.54 | 89.29 |
DFANet | 79.62 | 88.55 | 88.89 | 88.21 |
LEDNet | 76.62 | 86.62 | 86.42 | 86.85 |
MANet | 79.19 | 88.29 | 88.07 | 88.51 |
UNet | 77.67 | 87.31 | 86.99 | 87.67 |
Ours | 81.34 | 89.62 | 89.68 | 89.56 |
Model | Total Parameters (M) | Total Memory (MB) | Total Flops (G) |
---|---|---|---|
ABCNet | 13.52 | 51.57 | 3.58 |
CGNet | 0.49 | 1.88 | 0.83 |
DFANet | 2.02 | 7.68 | 3.22 |
LEDNet | 2.27 | 8.66 | 1.40 |
MANet | 35.86 | 136.79 | 18.05 |
UNet | 7.76 | 29.60 | 12.74 |
Ours | 5.84 | 22.28 | 6.16 |
Baseline | scSE–ASPP | scSE–MoblieNetV2 | Joint Loss | mIOU (%) | F1-Score (%) |
---|---|---|---|---|---|
✓ | 76.72 | 86.23 | |||
✓ | ✓ | 78.70 | 87.71 | ||
✓ | ✓ | 79.60 | 88.07 | ||
✓ | ✓ | 78.30 | 87.42 | ||
✓ | ✓ | ✓ | ✓ | 80.26 | 88.66 |
Baseline | scSE–ASPP | scSE–MoblieNetV2 | Joint Loss | mIOU (%) | F1-Score (%) |
---|---|---|---|---|---|
✓ | 78.34 | 87.74 | |||
✓ | ✓ | 79.11 | 88.36 | ||
✓ | ✓ | 78.63 | 88.06 | ||
✓ | ✓ | 79.27 | 88.42 | ||
✓ | ✓ | ✓ | ✓ | 81.34 | 89.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yang, P.; Ren, X. Detection of Oil Spill in SAR Image Using an Improved DeepLabV3+. Sensors 2024, 24, 5460. https://doi.org/10.3390/s24175460
Zhang J, Yang P, Ren X. Detection of Oil Spill in SAR Image Using an Improved DeepLabV3+. Sensors. 2024; 24(17):5460. https://doi.org/10.3390/s24175460
Chicago/Turabian StyleZhang, Jiahao, Pengju Yang, and Xincheng Ren. 2024. "Detection of Oil Spill in SAR Image Using an Improved DeepLabV3+" Sensors 24, no. 17: 5460. https://doi.org/10.3390/s24175460
APA StyleZhang, J., Yang, P., & Ren, X. (2024). Detection of Oil Spill in SAR Image Using an Improved DeepLabV3+. Sensors, 24(17), 5460. https://doi.org/10.3390/s24175460