Editorial for Special Issue: “Monitoring Terrestrial Water Resource Using Multiple Satellite Sensors”
1. Introduction
2. Water-Related Area Mapping Derived from Satellite Imagery
3. Water-Related Elevation Estimation Derived from Satellite Altimeter Data
4. Conclusions
Funding
Conflicts of Interest
List of Contributions
- Yu, J.; Cai, Y.; Lyu, X.; Xu, Z.; Wang, X.; Fang, Y.; Jiang, W.; Li, X. Boundary-Guided Semantic Context Network for Water Body Extraction from Remote Sensing Images. Remote. Sens. 2023, 15, 4325. https://doi.org/10.3390/rs15174325.
- Wu, T.; Xu, Z.; Chen, R.; Wang, S.; Li, T. Channel Activity Remote Sensing Retrieval Model: A Case Study of the Lower Yellow River. Remote. Sens. 2023, 15, 3636. https://doi.org/10.3390/rs15143636.
- Lyu, X.; Jiang, W.; Li, X.; Fang, Y.; Xu, Z.; Wang, X. MSAFNet: Multiscale Successive Attention Fusion Network for Water Body Extraction of Remote Sensing Images. Remote. Sens. 2023, 15, 3121. https://doi.org/10.3390/rs15123121.
- Lu, L.; Wang, L.; Yang, Q.; Zhao, P.; Du, Y.; Xiao, F.; Ling, F. Extracting a Connected River Network from DEM by Incorporating Surface River Occurrence Data and Sentinel-2 Imagery in the Danjiangkou Reservoir Area. Remote. Sens. 2023, 15, 1014. https://doi.org/10.3390/rs15041014.
- Wang, H.; Shen, D.; Chen, W.; Liu, Y.; Xu, Y.; Tan, D. Run-Length-Based River Skeleton Line Extraction from High-Resolution Remote Sensed Image. Remote. Sens. 2022, 14, 5852. https://doi.org/10.3390/rs14225852.
- Wang, C.; Xie, W.; Li, T.; Wu, G.; Wu, Y.; Wang, Q.; Xu, Z.; Song, H.; Yang, Y.; Pan, X. Analysis of Spatial and Temporal Variation in Water Coverage in the Sub-Lakes of Poyang Lake Based on Multi-Source Remote Sensing. Remote. Sens. 2023, 15, 2788. https://doi.org/10.3390/rs15112788.
- Sun, B.; Yang, Z.; Zhao, S.; Shi, X.; Liu, Y.; Ji, G.; Huotari, J. Water Balance Analysis of Hulun Lake, a Semi-Arid UNESCO Wetland, Using Multi-Source Data. Remote. Sens. 2023, 15, 2028. https://doi.org/10.3390/rs15082028.
- Zhang, Z.; Ahmed, R.; Zhang, Q.; Li, Y.; Li, Y. Monitoring of 35-Year Mangrove Wetland Change Dynamics and Agents in the Sundarbans Using Temporal Consistency Checking. Remote. Sens. 2023, 15, 625. https://doi.org/10.3390/rs15030625.
- Zhang, G.; Xing, S.; Xu, Q.; Li, P.; Wang, D. A Pre-Pruning Quadtree Isolation Method with Changing Threshold for ICESat-2 Bathymetric Photon Extraction. Remote. Sens. 2023, 15, 1629. https://doi.org/10.3390/rs15061629.
- Gao, M.; Xing, S.; Zhang, G.; Zhang, X.; Li, P. Assessment of ICESat-2’s Horizontal Accuracy Using an Iterative Matching Method Based on High-Accuracy Terrains. Remote. Sens. 2023, 15, 2236. https://doi.org/10.3390/rs15092236.
- Xie, J.; Zhong, J.; Mo, F.; Liu, R.; Li, X.; Yang, X.; Zeng, J. Denoising and Accuracy Evaluation of ICESat-2/ATLAS Photon Data for Nearshore Waters Based on Improved Local Distance Statistics. Remote. Sens. 2023, 15, 2828. https://doi.org/10.3390/rs15112828.
- Yang, J.; Ma, Y.; Zheng, H.; Gu, Y.; Zhou, H.; Li, S. Analysis and Correction of Water Forward-Scattering-Induced Bathymetric Bias for Spaceborne Photon-Counting Lidar. Remote. Sens. 2023, 15, 931. https://doi.org/10.3390/rs15040931.
- Jia, D.; Li, Y.; He, X.; Yang, Z.; Wu, Y.; Wu, T.; Xu, N. Methods to Improve the Accuracy and Robustness of Satellite-Derived Bathymetry through Processing of Optically Deep Waters. Remote. Sens. 2023, 15, 5406. https://doi.org/10.3390/rs15225406.
- Bernardis, M.; Nardini, R.; Apicella, L.; Demarte, M.; Guideri, M.; Federici, B.; Quarati, A.; De Martino, M. Use of ICEsat-2 and Sentinel-2 Open Data for the Derivation of Bathymetry in Shallow Waters: Case Studies in Sardinia and in the Venice Lagoon. Remote. Sens. 2023, 15, 2944. https://doi.org/10.3390/rs15112944.
- Cao, Y.; Wang, M.; Yao, J.; Mo, F.; Zhu, H.; Hu, L.; Zhai, H. Stereoscopic Monitoring Methods for Flood Disasters Based on ICESat-2 and Sentinel-2 Data. Remote. Sens. 2023, 15, 3015. https://doi.org/10.3390/rs15123015.
References
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Pi, X.; Luo, Q.; Feng, L.; Xu, Y.; Tang, J.; Liang, X.; Ma, E.; Cheng, R.; Fensholt, R.; Brandt, M.; et al. Mapping global lake dynamics reveals the emerging roles of small lakes. Nat. Commun. 2022, 13, 5777. [Google Scholar] [CrossRef]
- Xu, N.; Lu, H.; Li, W.; Gong, P. Natural lakes dominate global water storage variability. Sci. Bull. 2024, 69, 1016–1019. [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring surface water from space. Rev. Geophys. 2007, 45, RG2002. [Google Scholar] [CrossRef]
- Pickens, A.H.; Hansen, M.C.; Hancher, M.; Stehman, S.V.; Tyukavina, A.; Potapov, P.; Marroquin, B.; Sherani, Z. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 2020, 243, 111792. [Google Scholar] [CrossRef]
- Wang, J.; Song, C.; Reager, J.T.; Yao, F.; Famiglietti, J.S.; Sheng, Y.; MacDonald, G.M.; Brun, F.; Schmied, H.M.; Marston, R.A.; et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 2018, 11, 926–932. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, N.; Sun, J.; Wang, X.H.; Yang, F.; Li, S. Estimating water levels and volumes of lakes dated back to the 1980s using Landsat imagery and photon-counting lidar datasets. Remote Sens. Environ. 2019, 232, 111287. [Google Scholar] [CrossRef]
- Xu, N.; Ma, Y.; Wei, Z.; Huang, C.; Li, G.; Zheng, H.; Wang, X.H. Satellite observed recent rising water levels of global lakes and reservoirs. Environ. Res. Lett. 2022, 17, 074013. [Google Scholar] [CrossRef]
- Luo, S.; Song, C.; Ke, L.; Zhan, P.; Fan, C.; Liu, K.; Chen, T.; Wang, J.; Zhu, J. Satellite laser altimetry reveals a net water mass gain in global lakes with spatial heterogeneity in the early 21st century. Geophys. Res. Lett. 2022, 49, e2021GL096676. [Google Scholar] [CrossRef]
- Xu, N.; Ma, Y.; Zhang, W.; Wang, X.H. Surface-water-level changes during 2003–2019 in Australia revealed by ICESat/ICESat-2 altimetry and Landsat imagery. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1129–1133. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, W.; Xie, H. Tibetan Plateau’s lake level and volume changes from NASA’s ICESat/ICESat-2 and Landsat Missions. Geophys. Res. Lett. 2019, 46, 13107–13118. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, L.; Zhang, X.; Liu, J. Tracking river’s pulse from space: A global analysis of river stage fluctuations. Geophys. Res. Lett. 2023, 50, e2023GL106399. [Google Scholar] [CrossRef]
- Gou, J.; Soja, B. Global high-resolution total water storage anomalies from self-supervised data assimilation using deep learning algorithms. Nat. Water 2024, 2, 139–150. [Google Scholar] [CrossRef]
- Li, X.; Long, D.; Scanlon, B.R.; Mann, M.E.; Li, X.; Tian, F.; Sun, Z.; Wang, G. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat. Clim. Chang. 2022, 12, 801–807. [Google Scholar] [CrossRef]
- Coppo Frias, M.; Liu, S.; Mo, X.; Nielsen, K.; Ranndal, H.; Jiang, L.; Ma, J.; Bauer-Gottwein, P. River hydraulic modeling with ICESat-2 land and water surface elevation. Hydrol. Earth Syst. Sci. 2023, 27, 1011–1032. [Google Scholar] [CrossRef]
- Chawla, I.; Karthikeyan, L.; Mishra, A.K. A review of remote sensing applications for water security: Quantity, quality, and extremes. J. Hydrol. 2020, 585, 124826. [Google Scholar] [CrossRef]
- Kavvada, A.; Metternicht, G.; Kerblat, F.; Mudau, N.; Haldorson, M.; Laldaparsad, S.; Friedl, L.; Held, A.; Chuvieco, E. Towards delivering on the sustainable development goals using earth observations. Remote Sens. Environ. 2020, 247, 111930. [Google Scholar] [CrossRef]
- Yang, W.; Long, D.; Scanlon, B.R.; Burek, P.; Zhang, C.; Han, Z.; Butler, J.J., Jr.; Pan, Y.; Lei, X.; Wada, Y. Human intervention will stabilize groundwater storage across the North China Plain. Water Resour. Res. 2022, 58, e2021WR030884. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, G.; Allen, G.H.; Gao, H. Diminishing storage returns of reservoir construction. Nat. Commun. 2023, 14, 3203. [Google Scholar] [CrossRef]
- Rao, D.P. A remote sensing-based integrated approach for sustainable development of land water resources. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2001, 31, 207–215. [Google Scholar] [CrossRef]
- Sawaya, K.E.; Olmanson, L.G.; Heinert, N.J.; Brezonik, P.L.; Bauer, M.E. Extending satellite remote sensing to local scales: Land and water resource monitoring using high-resolution imagery. Remote Sens. Environ. 2003, 88, 144–156. [Google Scholar] [CrossRef]
- Jiang, R.; Lu, H.; Yang, K.; Chen, D.; Zhou, J.; Yamazaki, D.; Pan, M.; Li, W.; Xu, N.; Yang, Y.; et al. Substantial increase in future fluvial flood risk projected in China’s major urban agglomerations. Commun. Earth Environ. 2023, 4, 389. [Google Scholar] [CrossRef]
- Xu, N.; Gong, P. Significant coastline changes in China during 1991–2015 tracked by Landsat data. Sci. Bull. 2018, 63, 883–886. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.I.; Pekel, J.F.; Voukouvalas, E.; Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 12876. [Google Scholar] [CrossRef]
- Jiang, S.; Xu, N.; Li, Z.; Huang, C. Satellite derived coastal reclamation expansion in China since the 21st century. Glob. Ecol. Conserv. 2021, 30, e01797. [Google Scholar] [CrossRef]
- Yu, J.; Cai, Y.; Lyu, X.; Xu, Z.; Wang, X.; Fang, Y.; Jiang, W.; Li, X. Boundary-guided semantic context network for water body extraction from remote sensing images. Remote Sens. 2023, 15, 4325. [Google Scholar] [CrossRef]
- Wu, T.; Xu, Z.; Chen, R.; Wang, S.; Li, T. Channel Activity Remote Sensing Retrieval Model: A Case Study of the Lower Yellow River. Remote Sens. 2023, 15, 3636. [Google Scholar] [CrossRef]
- Lyu, X.; Jiang, W.; Li, X.; Fang, Y.; Xu, Z.; Wang, X. MSAFNet: Multiscale Successive Attention Fusion Network for Water Body Extraction of Remote Sensing Images. Remote Sens. 2023, 15, 3121. [Google Scholar] [CrossRef]
- Lu, L.; Wang, L.; Yang, Q.; Zhao, P.; Du, Y.; Xiao, F.; Ling, F. Extracting a Connected River Network from DEM by Incorporating Surface River Occurrence Data and Sentinel-2 Imagery in the Danjiangkou Reservoir Area. Remote Sens. 2023, 15, 1014. [Google Scholar] [CrossRef]
- Wang, H.; Shen, D.; Chen, W.; Liu, Y.; Xu, Y.; Tan, D. Run-Length-Based River Skeleton Line Extraction from High-Resolution Remote Sensed Image. Remote Sens. 2022, 14, 5852. [Google Scholar] [CrossRef]
- Wang, C.; Xie, W.; Li, T.; Wu, G.; Wu, Y.; Wang, Q.; Xu, Z.; Song, H.; Yang, Y.; Pan, X. Analysis of Spatial and Temporal Variation in Water Coverage in the Sub-Lakes of Poyang Lake Based on Multi-Source Remote Sensing. Remote Sens. 2023, 15, 2788. [Google Scholar] [CrossRef]
- Zhang, T.; Suen, C. A Fast Parallel Algorithm for Thinning Digital Patterns. Commun. ACM 1984, 27, 236–239. [Google Scholar] [CrossRef]
- Sun, B.; Yang, Z.; Zhao, S.; Shi, X.; Liu, Y.; Ji, G.; Huotari, J. Water Balance Analysis of Hulun Lake, a Semi-Arid UNESCO Wetland, Using Multi-Source Data. Remote Sens. 2023, 15, 2028. [Google Scholar] [CrossRef]
- Zhang, Z.; Ahmed, M.R.; Zhang, Q.; Li, Y.; Li, Y. Monitoring of 35-year mangrove wetland change dynamics and agents in the sundarbans using temporal consistency checking. Remote Sens. 2023, 15, 625. [Google Scholar] [CrossRef]
- Zhang, G.; Xing, S.; Xu, Q.; Li, P.; Wang, D. A pre-pruning quadtree isolation method with changing threshold for ICESat-2 bathymetric photon extraction. Remote Sens. 2023, 15, 1629. [Google Scholar] [CrossRef]
- Gao, M.; Xing, S.; Zhang, G.; Zhang, X.; Li, P. Assessment of ICESat-2’s Horizontal Accuracy Using an Iterative Matching Method Based on High-Accuracy Terrains. Remote Sens. 2023, 15, 2236. [Google Scholar] [CrossRef]
- Xie, J.; Zhong, J.; Mo, F.; Liu, R.; Li, X.; Yang, X.; Zeng, J. Denoising and Accuracy Evaluation of ICESat-2/ATLAS Photon Data for Nearshore Waters Based on Improved Local Distance Statistics. Remote Sens. 2023, 15, 2828. [Google Scholar] [CrossRef]
- Yang, J.; Ma, Y.; Zheng, H.; Gu, Y.; Zhou, H.; Li, S. Analysis and Correction of Water Forward-Scattering-Induced Bathymetric Bias for Spaceborne Photon-Counting Lidar. Remote Sens. 2023, 15, 931. [Google Scholar] [CrossRef]
- Jia, D.; Li, Y.; He, X.; Yang, Z.; Wu, Y.; Wu, T.; Xu, N. Methods to Improve the Accuracy and Robustness of Satellite-Derived Bathymetry through Processing of Optically Deep Waters. Remote Sens. 2023, 15, 5406. [Google Scholar] [CrossRef]
- Bernardis, M.; Nardini, R.; Apicella, L.; Demarte, M.; Guideri, M.; Federici, B.; Quarati, A.; De Martino, M. Use of ICEsat-2 and Sentinel-2 Open Data for the Derivation of Bathymetry in Shallow Waters: Case Studies in Sardinia and in the Venice Lagoon. Remote Sens. 2023, 15, 2944. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, M.; Yao, J.; Mo, F.; Zhu, H.; Hu, L.; Zhai, H. Stereoscopic Monitoring Methods for Flood Disasters Based on ICESat-2 and Sentinel-2 Data. Remote Sens. 2023, 15, 3015. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, N.; Ma, Y.; Li, S.; Tan, D. Editorial for Special Issue: “Monitoring Terrestrial Water Resource Using Multiple Satellite Sensors”. Remote Sens. 2024, 16, 1821. https://doi.org/10.3390/rs16111821
Xu N, Ma Y, Li S, Tan D. Editorial for Special Issue: “Monitoring Terrestrial Water Resource Using Multiple Satellite Sensors”. Remote Sensing. 2024; 16(11):1821. https://doi.org/10.3390/rs16111821
Chicago/Turabian StyleXu, Nan, Yue Ma, Song Li, and Debao Tan. 2024. "Editorial for Special Issue: “Monitoring Terrestrial Water Resource Using Multiple Satellite Sensors”" Remote Sensing 16, no. 11: 1821. https://doi.org/10.3390/rs16111821
APA StyleXu, N., Ma, Y., Li, S., & Tan, D. (2024). Editorial for Special Issue: “Monitoring Terrestrial Water Resource Using Multiple Satellite Sensors”. Remote Sensing, 16(11), 1821. https://doi.org/10.3390/rs16111821