Critical Disaster Indicators (CDIs): Deriving the Duration, Damage Degree, and Recovery Level from Nighttime Light Image Time Series
<p>Regions and representative counties in Puerto Rico and the path of Hurricane Maria as it passed over the island.</p> "> Figure 2
<p>Comparison between the official recovery data from DOE and island-wide average nighttime light radiance before and after Hurricane Maria hits Puerto Rico.</p> "> Figure 3
<p>The analytical framework in this study.</p> "> Figure 4
<p>Sensitivity analysis on data smoothing using different filter order (from 1 to 5). The optimal filter order is found at 1.</p> "> Figure 5
<p>An illustration of three CDIs: the duration (the green line), the damage degree (the ratio of blue to purple lines), and the recovery level (the ratio of brown to purple lines).</p> "> Figure 6
<p>Sensitivity analysis of different thresholds on the outage duration estimation.</p> "> Figure 7
<p>An example of the sensitivity analysis of outage duration using different lengths of moving window (<span class="html-italic">lag</span>).</p> "> Figure 8
<p>Estimated tract-level outage duration derived from Automated Valley Detection.</p> "> Figure 9
<p>Histogram of the estimated outage duration result using AVD.</p> "> Figure 10
<p>(<b>A</b>) The AVD-estimated tract-level degree of damage; (<b>B</b>) hurricane threat based on tract-level averaged kernel density.</p> "> Figure 11
<p>The correlation between damage level and hurricane threat. The density of observations is displayed by a purple color gradient. The darker area represents a higher point density.</p> "> Figure 12
<p>The AVD-estimated tract-level recovery degree in the entire island (as of July 2019). Darker tracts (e.g., A to C) have a high recovery level, while lighter tracts (e.g., D to I) are those with low recovery levels. Some key power plants are shown as orange stars.</p> "> Figure 13
<p>Illustration of the raw NTL profiles of sample tracts with brighter post-disaster radiance than the pre-disaster level (<b>A</b>–<b>C</b> with a recovery rate > 100%), and those with darker post-disaster radiance (<b>D</b>–<b>I</b> with a recovery rate < 80%), where the red dashed lines show the pre-/post-disaster level using weighted average. The numbering follows the same tracts in <a href="#remotesensing-15-05471-f012" class="html-fig">Figure 12</a>.</p> "> Figure 14
<p>Cumulative percentage of customers with power in the entire island over time.</p> "> Figure 15
<p>Comparisons between weighted average and simple average.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
3.1. Data Smoothing
3.2. Change Detection
3.3. CDI Metrics Derivation
3.4. Accuracy Assessment
4. Results
4.1. Selection of the Optimal Parameter Settings
4.2. Results of the Three CDIs
4.2.1. Results of Outage Duration
“Los portavoces de la marcha resaltaron que a más de seis meses del paso del Huracán María, aún la mayoría del sureste de la Isla, sigue sin el servicio de energía eléctrica”.(Direct quote of a news report on 21 March 2018, [41])
“Leaders from the march stressed that more than six months after the passage of Hurricane Maria, even the majority of the southeast of the Island, is still without the electric power service”.(Translated)
4.2.2. Result of the Degree of Damage
4.2.3. Result of the Degree of Recovery
5. Discussion
5.1. Temporally Weighted Average
5.2. Extensions on Critical Disaster Indicator Estimate
5.3. Limitations and Future Works
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Climate Central. Surging Power Outages and Climate Change. 2022. Available online: https://assets.ctfassets.net/cxgxgstp8r5d/73igUswSfOhdo7DUDVLwK7/bb0a4e95e1d04457e56106355a1f74b9/2022PowerOutages.pdf (accessed on 14 September 2022).
- Cao, C.; Shao, X.; Uprety, S. Detecting light outages after severe storms using the S-NPP/VIIRS day/night band radiances. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1582–1586. [Google Scholar] [CrossRef]
- DOE. Hurricanes Nate, Maria, Irma, and Harvey Situation Reports. 2017. Available online: https://www.energy.gov/ceser/articles/hurricanes-nate-maria-irma-and-harvey-situation-reports (accessed on 13 May 2017).
- King, C.W.; Rhodes, J.D.; Zarnikau, J.; Lin, N.; Kutanoglu, E.; Leibowicz, B.; Niyogi, D.; Rai, V.; Santoso, S.; Spence, D. The Timeline and Events of the February 2021 Texas Electric Grid Blackouts; The University of Texas Energy Institute: Austin, TX, USA, 2021. [Google Scholar]
- Papic, M.; Clemons, M.; Ekisheva, S.; Langthorn, J.; Ly, T.; Pakeltis, M.; Quest, R.; Schaller, J.; Till, D.; Weisman, K. Transmission availability data system (TADS) reporting and data analysis. In Proceedings of the 2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Beijing, China, 16–20 October 2016. [Google Scholar]
- Eaton, Powering Business Worldwide. Power Outage Annual Report: Blackout Tracker. 2014. Available online: http://www.eaton.com/blackouttracker (accessed on 26 February 2015).
- Balsa-Barreiro, J.; Menendez, M.; Morales, A.J. Scale, context, and heterogeneity: The complexity of the social space. Sci. Rep. 2022, 12, 9037. [Google Scholar] [CrossRef]
- Román, M.O.; Stokes, E.C.; Shrestha, R.; Wang, Z.; Schultz, L.; Carlo, E.A.S.; Sun, Q.; Bell, J.; Molthan, A.; Kalb, V.; et al. Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria. PLoS ONE 2019, 14, e0218883. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, B.; Liu, Y.; Yao, S.; Lian, T.; Chen, L.; Yang, C.; Chen, Z.; Wu, J. NPP-VIIRS DNB daily data in natural disaster assessment: Evidence from selected case studies. Remote Sens. 2018, 10, 1526. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Zhou, C.; Cheng, W.; Li, M.; Huang, K. Building a series of consistent night-time light data (1992–2018) in Southeast Asia by integrating DMSP-OLS and NPP-VIIRS. IEEE Trans. GeoSci. Remote Sens. 2019, 58, 1843–1856. [Google Scholar] [CrossRef]
- Balsa-Barreiro, J. LiDAR for management in natural disasters and catastrophes. In Government Briefing Book: Emerging Technology & Human Rights; Greene, K.G., Ed.; 2019; Volume 1, p. 11. Available online: https://www.greenestrategy.com/brief (accessed on 1 July 2021).
- Kaku, K. Satellite remote sensing for disaster management support: A holistic and staged approach based on case studies in Sentinel Asia. Int. J. Disaster Risk Reduct. 2019, 33, 417–432. [Google Scholar] [CrossRef]
- Daud, S.M.S.M.; Yusof, M.Y.P.M.; Heo, C.C.; Khoo, L.S.; Singh, M.K.C.; Mahmood, M.S.; Nawawi, H. Applications of drone in disaster management: A scoping review. Sci. Justice 2022, 62, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62. [Google Scholar] [CrossRef]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Responses of Suomi-NPP VIIRS-derived nighttime lights to socioeconomic activity in China’s cities. Remote Sens. Lett. 2014, 5, 165–174. [Google Scholar] [CrossRef]
- Wu, R.; Yang, D.; Dong, J.; Zhang, L.; Xia, F. Regional inequality in China based on NPP-VIIRS night-time light imagery. Remote Sens. 2018, 10, 240. [Google Scholar] [CrossRef]
- Deng, C.; Lin, W.; Chen, S. Use of smart meter readings and nighttime light images to track pixel-level electricity consumption. Remote Sens. Lett. 2019, 10, 205–213. [Google Scholar] [CrossRef]
- Fragkias, M.; Lobo, J.; Seto, K.C. A comparison of nighttime lights data for urban energy research: Insights from scaling analysis in the US system of cities. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 1077–1096. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.; Hsu, F.-C. Automatic boat identification system for VIIRS low light imaging data. Remote Sens. 2015, 7, 3020–3036. [Google Scholar] [CrossRef]
- Geronimo, R.C.; Franklin, E.C.; Brainard, R.E.; Elvidge, C.D.; Santos, M.D.; Venegas, R.; Mora, C. Mapping fishing activities and suitable fishing grounds using nighttime satellite images and maximum entropy modelling. Remote Sens. 2018, 10, 1604. [Google Scholar] [CrossRef]
- Levin, N.; Ali, S.; Crandall, D. Utilizing remote sensing and big data to quantify conflict intensity: The Arab Spring as a case study. Appl. Geogr. 2018, 94, 1–17. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Jendryke, M.; Li, D.; Wu, C. Night-time light dynamics during the Iraqi civil war. Remote Sens. 2018, 10, 858. [Google Scholar] [CrossRef]
- Levin, N.; Ali, S.; Crandall, D.; Kark, S. World Heritage in danger: Big data and remote sensing can help protect sites in conflict zones. Glob. Environ. Chang. 2019, 55, 97–104. [Google Scholar] [CrossRef]
- Cole, T.A.; Wanik, D.W.; Molthan, A.L.; Román, M.O.; Griffin, R.E. Synergistic use of nighttime satellite data, electric utility infrastructure, and ambient population to improve power outage detections in urban areas. Remote Sens. 2017, 9, 286. [Google Scholar] [CrossRef]
- Molthan, A.; Jedlovec, G. Satellite observations monitor outages from Superstorm Sandy. Eos Trans. Am. Geophys. Union 2013, 94, 53–54. [Google Scholar] [CrossRef]
- Wang, Z.; Román, M.O.; Sun, Q.; Molthan, A.L.; Schultz, L.A.; Kalb, V.L. Monitoring disaster-related power outages using NASA black marble nighttime light product. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 1853–1856. [Google Scholar] [CrossRef]
- Chang, S.E. Urban disaster recovery: A measurement framework and its application to the 1995 Kobe earthquake. Disasters 2010, 34, 303–327. [Google Scholar] [CrossRef] [PubMed]
- Pacsi, A.P.; Alhajeri, N.S.; Webster, M.D.; Webber, M.E.; Allen, D.T. Changing the spatial location of electricity generation to increase water availability in areas with drought: A feasibility study and quantification of air quality impacts in Texas. Environ. Res. Lett. 2013, 8, 035029. [Google Scholar] [CrossRef]
- Kwasinski, A.; Andrade, F.; Castro-Sitiriche, M.J.; O’Neill-Carrillo, E. Hurricane Maria effects on Puerto Rico electric power infrastructure. IEEE Power Energy Technol. Syst. J. 2019, 6, 85–94. [Google Scholar] [CrossRef]
- Corps, M. Quick Facts: Hurricane Maria’s Effect on Puerto Rico. 2019. Available online: https://www.mercycorps.org/blog/facts-hurricane-maria-puerto-rico#:~:text=Electricity%20was%20cut%20off%20to,into%20a%20desperate%20humanitarian%20crisis (accessed on 3 July 2019).
- Irfan, U. It’s Been More than 100 Days and Puerto Rico is Still in the Longest Blackout in US History. Vox. 2018. Available online: https://www.vox.com/energy-and-environment/2017/10/30/16560212/puerto-rico-longest-blackout-in-us-history-hurricane-maria-grid-electricity (accessed on 8 December 2018).
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Guiñón, J.L.; Ortega, E.; García-Antón, J.; Pérez-Herranz, V. Moving average and Savitzki-Golay smoothing filters using Mathcad. Papers ICEE 2007, 2007, 1–4. [Google Scholar]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A. Savitzky-Golay smoothing filters. Comput. Phys. 1990, 4, 669–672. [Google Scholar] [CrossRef]
- van Brakel, J.P. Smoothed z-Score Algorithm (Stack Overflow). 2016. Available online: https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data (accessed on 17 June 2016).
- Dons, E.; Laeremans, M.; Orjuela, J.P.; Avila-Palencia, I.; de Nazelle, A.; Nieuwenhuijsen, M.; Van Poppel, M.; Carrasco-Turigas, G.; Standaert, A.; De Boever, P.; et al. Transport most likely to cause air pollution peak exposures in everyday life: Evidence from over 2000 days of personal monitoring. Atmos. Environ. 2019, 213, 424–432. [Google Scholar] [CrossRef]
- Perkins, P.; Heber, S. Identification of ribosome pause sites using a z-score based peak detection algorithm. In Proceedings of the 2018 IEEE 8th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), Las Vegas, NV, USA, 18–20 October 2018. [Google Scholar]
- Zou, L.; Lam, N.S.N.; Shams, S.; Cai, H.; Meyer, M.A.; Yang, S.; Lee, K.; Park, S.-J.; Reams, M.A. Social and geographical disparities in Twitter use during Hurricane Harvey. Int. J. Digit. Earth 2019, 12, 1300–1318. [Google Scholar] [CrossRef]
- Harán “Reclamo Masivo” en Humacao por el Servicio Eléctrico. Redacción EL Oriental. Available online: http://periodicoeloriental.com/noticias/haran-reclamo-masivo-en-humacao-por-el-servicio-electrico/ (accessed on 21 March 2018).
- Millán, R. Justo González Admite Siente la Presión de Restablecer Servicio. El Regional. Available online: https://www.elregionalpr.com/justo-gonzalez-admite-siente-la-presion-de-restablecer-servicio/ (accessed on 10 January 2018).
- Mayita Meléndez Habla de la Situación de Ponce tras seis Meses del Huracán María. Períodíco El Solpr. 20 March 2018. Available online: https://periodicoelsolpr.com/2018/03/20/mayita-melendez-habla-de-la-situacion-de-ponce-tras-seis-meses-del-huracan-maria/ (accessed on 20 March 2018).
- Alcalde Busca Alternativas para Acelerar Restablecimiento de Electricidad en Guayanilla. Voces del Sur. Available online: https://vocesdelsurpr.com/2018/03/alcalde-busca-alternativas-para-acelerar-restablecimiento-de-electricidad-en-guayanilla/ (accessed on 27 March 2018).
- Rodríguez, D.J. El Oeste Tendrá luz Total Después de Enero. Redacción One Red Media. Available online: https://laislaoeste.com/el-oeste-tendra-luz-total-despues-de-enero/ (accessed on 19 December 2017).
- Sharifi, A. Resilient urban forms: A macro-scale analysis. Cities 2019, 85, 1–14. [Google Scholar] [CrossRef]
- Acosta, R.J.; Kishore, N.; Irizarry, R.A.; Buckee, C.O. Quantifying the dynamics of migration after Hurricane Maria in Puerto Rico. Proc. Natl. Acad. Sci. USA 2020, 117, 32772–32778. [Google Scholar] [CrossRef]
- Lin, J.; Shi, W. Statistical correlation between monthly electric power consumption and VIIRS nighttime light. ISPRS Int. J. Geo-Inf. 2020, 9, 32. [Google Scholar] [CrossRef]
- Henderson, J.; Storeygard, V.A.; Weil, D.N. Measuring economic growth from outer space. Am. Econ. Rev. 2012, 102, 994–1028. [Google Scholar] [CrossRef]
- Henderson, J.; Storeygard, V.A.; Weil, D.N. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar]
- United States Census Bureau. QuickFacts: Puerto Rico. 2022. Available online: https://www.census.gov/quickfacts/fact/table/PR/PST045222 (accessed on 13 September 2022).
- Kates, R.W.; Colten, C.E.; Laska, S.; Leatherman, S.P. Reconstruction of New Orleans after Hurricane Katrina: A research perspective. Proc. Natl. Acad. Sci. USA 2006, 103, 14653–14660. [Google Scholar] [CrossRef]
- Miller, S.D.; Straka, W.C.; Yue, J.; Seaman, C.J.; Xu, S.; Elvidge, C.D.; Hoffmann, L.; Azeem, I.; Straka, I.W.C. The dark side of hurricane matthew: Unique perspectives from the VIIRS day/night band. Bull. Am. Meteorol. Soc. 2018, 99, 2561–2574. [Google Scholar] [CrossRef]
- Miller, S.D.; Straka, W.C.; Yue, J.; Seaman, C.J.; Xu, S.; Elvidge, C.D.; Hoffmann, L.; Azeem, I.; Straka, I.W.C. Socioeconomic vulnerability and electric power restoration timelines in Florida: The case of Hurricane Irma. Nat. Hazards 2018, 94, 689–709. [Google Scholar]
- DeWaard, J.; Johnson, J.E.; Whitaker, S.D. Out-migration from and return migration to Puerto Rico after Hurricane Maria: Evidence from the consumer credit panel. Popul. Environ. 2020, 42, 28–42. [Google Scholar] [CrossRef]
- Martín, Y.; Cutter, S.L.; Li, Z.; Emrich, C.T.; Mitchell, J.T. Using geotagged tweets to track population movements to and from Puerto Rico after Hurricane Maria. Popul. Environ. 2020, 42, 4–27. [Google Scholar] [CrossRef]
- Rivera, F.I. Puerto Rico’s population before and after Hurricane Maria. Popul. Environ. 2020, 42, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Schachter, J.; Bruce, A. Revising Methods to Better Reflect the Impact of Disaster. 2021. Available online: https://www.census.gov/library/stories/2020/08/estimating-puerto-rico-population-after-hurricane-maria.html (accessed on 8 November 2021).
- Simon, D. Urbanisation and global environmental change: New intergenerational challenges. Int. J. Green Econ. 2007, 1, 299–306. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Deng, C.; Güneralp, B.; Zou, L. Critical Disaster Indicators (CDIs): Deriving the Duration, Damage Degree, and Recovery Level from Nighttime Light Image Time Series. Remote Sens. 2023, 15, 5471. https://doi.org/10.3390/rs15235471
Lin W, Deng C, Güneralp B, Zou L. Critical Disaster Indicators (CDIs): Deriving the Duration, Damage Degree, and Recovery Level from Nighttime Light Image Time Series. Remote Sensing. 2023; 15(23):5471. https://doi.org/10.3390/rs15235471
Chicago/Turabian StyleLin, Weiying, Chengbin Deng, Burak Güneralp, and Lei Zou. 2023. "Critical Disaster Indicators (CDIs): Deriving the Duration, Damage Degree, and Recovery Level from Nighttime Light Image Time Series" Remote Sensing 15, no. 23: 5471. https://doi.org/10.3390/rs15235471
APA StyleLin, W., Deng, C., Güneralp, B., & Zou, L. (2023). Critical Disaster Indicators (CDIs): Deriving the Duration, Damage Degree, and Recovery Level from Nighttime Light Image Time Series. Remote Sensing, 15(23), 5471. https://doi.org/10.3390/rs15235471