Nothing Special   »   [go: up one dir, main page]

\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A new construction of weightwise perfectly balanced Boolean functions

The second author is supported by the Key Scientific Research Project of Colleges and Universities in Henan Province (Grant No. 21A413003) and the National Natural Science Foundation of China (Grant No. 61502147)

Abstract / Introduction Full Text(HTML) Figure(0) / Table(2) Related Papers Cited by
  • In this paper, we first introduce a class of quartic Boolean functions. And then, the construction of weightwise perfectly balanced Boolean functions on $ 2^m $ variables are given by modifying the support of the quartic functions, where $ m $ is a positive integer. The algebraic degree, the weightwise nonlinearity, and the algebraic immunity of the newly constructed weightwise perfectly balanced functions are discussed at the end of this paper.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  The $ k $-weight nonlinearity of $ g_3 $ in (11) for $ k = 2,3,4,5,6 $

    k $ k $-weight nonlinearity of $ g_3 $ in (11) $ \lfloor {8\choose k}/{2}-\sqrt{8\choose k}/{2}\rfloor $
    2 $ \mathrm{NL}_{2}(g_{3})=2 $ 11
    3 $ \mathrm{NL}_{3}(g_3)=12 $ 24
    4 $ \mathrm{NL}_{4}(g_3)=19 $ 30
    5 $ \mathrm{NL}_{5}(g_3)=12 $ 24
    6 $ \mathrm{NL}_{6}(g_3)=6 $ 11
     | Show Table
    DownLoad: CSV

    Table 2.  The algebraic immunity of $ g_{m} $ for $ m = 2,3,4 $

    $ m $ algebraic immunity of $ g_{m} $ in (11) optimal algebraic immunity
    2 $ AI(g_2)=2 $ 2
    3 $ AI(g_3)=3 $ 4
    4 $ AI(g_4)=3 $ 8
     | Show Table
    DownLoad: CSV
  • [1] C. CarletP. M$\mathrm{\acute{e}}$aux and Y. Rotella, Boolean functions with restricted input and their robustness: Application to the FLIP cipher, IACR Trans. Symm. Cryptol., 2017 (2017), 192-227. 
    [2] N. T. Coutois and W. Meier, Algebraic attacks on stream ciphers with linear feedback, Advances in Cryptology-EUROCRYPT 2003, 2656 (2003), 345-359.  doi: 10.1007/3-540-39200-9_21.
    [3] S. Duval, V. Lallemand and Y. Rotella, Cryptanalysis of the FLIP family of stream ciphers, in Advances in Cryptology—CRYPTO 2016, Lecture Notes in Computer Science, 9814, Berlin, Springer-Verlag, 2016,457–475. doi: 10.1007/978-3-662-53018-4_17.
    [4] Y. Filmus, Friedgut-Kalai-Naor theorem for slices of the Boolean cube, Chic. J. Theoret. Comput. Sci., 14 (2016), 1-17.  doi: 10.4086/cjtcs.2016.014.
    [5] Y. Filmus, An orthogonal basis for functions over a slice of the Boolean hypercube, Electron. J. Combin., 23 (2016), 1-23. 
    [6] J. Li and S. Su, Construction of weightwise perfectly balanced Boolean functions with high weightwise nonlinearity, Discrete Appl. Math., 279 (2020), 218-227.  doi: 10.1016/j.dam.2020.01.020.
    [7] P. M$\mathrm{\acute{e}}$aux, A. Journault, F.-X. Standaert and C. Carlet, Towards stream ciphers for efficient FHE with low-noise ciphertexts, in Advances in Cryptology-EUROCRYPT 2016, Lecture Notes in Computer Science, 9665, Berlin, Springer-Verlag, 2016,311–343. doi: 10.1007/978-3-662-49890-3_13.
    [8] S. Mesnager and S. Su, On constructions of weightwise perfectly balanced Boolean functions, Cryptogr. Commun., (2021). doi: 10.1007/s12095-021-00481-32021.
    [9] S. MesnagerZ. Zhou and C. Ding, On the nonlinearity of Boolean functions with restricted input, Cryptogr. Commun., 11 (2019), 63-76.  doi: 10.1007/s12095-018-0293-6.
    [10] A. Richard, Orthogonal polynomials and special functions, in Regional Conference Series in Applied Mathematics, 21, SIAM, Philadelphia, PA, 1975, 59–60.
    [11] S. Su, The lower bound of the weightwise nonlinearity profile of a class of weightwise perfectly balanced functions, Discrete Appl. Math., 297 (2021), 60-70.  doi: 10.1016/j.dam.2021.02.033.
    [12] D. Tang and J. Liu, A family of weightwise perfectly balanced boolean functions with optimal algebraic immunity, Cryptogr. Commun., 11 (2019), 1185-1197.  doi: 10.1007/s12095-019-00374-6.
    [13] E. W. Weisstein, Pascal's formula, From MathWorld-A Wolfram Web Resource. Available from: http://mathworld.wolfram.com/PascalsFormula.html.
  • 加载中

Tables(2)

SHARE

Article Metrics

HTML views(3398) PDF downloads(789) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return