k | $ k $-weight nonlinearity of $ g_3 $ in (11) | $ \lfloor {8\choose k}/{2}-\sqrt{8\choose k}/{2}\rfloor $ |
2 | $ \mathrm{NL}_{2}(g_{3})=2 $ | 11 |
3 | $ \mathrm{NL}_{3}(g_3)=12 $ | 24 |
4 | $ \mathrm{NL}_{4}(g_3)=19 $ | 30 |
5 | $ \mathrm{NL}_{5}(g_3)=12 $ | 24 |
6 | $ \mathrm{NL}_{6}(g_3)=6 $ | 11 |