Nothing Special   »   [go: up one dir, main page]

TOPICS
Search

Pascal's Formula


Each subsequent row of Pascal's triangle is obtained by adding the two entries diagonally above. This follows immediately from the binomial coefficient identity

(n; r)=(n!)/((n-r)!r!)
(1)
=((n-1)!n)/((n-r)!r!)
(2)
=((n-1)!(n-r))/((n-r)!r!)+((n-1)!r)/((n-r)!r!)
(3)
=((n-1)!)/((n-r-1)!r!)+((n-1)!)/((n-r)!(r-1)!)
(4)
=(n-1; r)+(n-1; r-1).
(5)

See also

Binomial Coefficient, Binomial Sums, Pascal's Triangle

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Pascal's Formula." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PascalsFormula.html

Subject classifications