Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2020, Vol. 47 ›› Issue (1): 212-218.doi: 10.11896/jsjkx.181001898

• 人工智能 • 上一篇    下一篇

有限值终态递归神经网络计算

孙明轩,翁丁恩,张钰   

  1. (浙江工业大学信息工程学院 杭州310023)
  • 收稿日期:2018-10-11 发布日期:2020-01-19
  • 通讯作者: 孙明轩(mxsun@zjut.edu.cn)
  • 基金资助:
    国家自然科学基金(61573320)

Time-variant Neurocomputing with Finite-value Terminal Recurrent Neural Networks

SUN Ming-xuan,WENG Ding-en,ZHANG Yu   

  1. (College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China)
  • Received:2018-10-11 Published:2020-01-19
  • About author:SUN Ming-xuan,born in 1961,Ph.D,professor,Ph.D supervisor.His main research interests include learning systems and neural computing.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (61573320).

摘要: 通常的递归神经网络计算方法采用渐近收敛的网络模型,误差函数渐近收敛于零,理论上需经过无穷长的计算时间才能获得被求解问题的精确解。文中提出了一种终态递归神经网络模型,该网络形式新颖,具有有限时间收敛特性,用于解决时变矩阵计算问题时可使得计算过程快速收敛,且计算精度高。该网络的另一特点是动态方程右端函数值有限,易于实现。首先,分析渐近收敛网络模型在时变计算问题求解方面的缺陷,说明引入终态网络模型的必要性;然后,给出终态网络动态方程,推导出该网络收敛时间的具体表达式。对于时变矩阵逆和广义逆求解,定义一个误差函数,并依据误差函数构造终态递归神经网络进行求解,使计算过程在有限时间内收敛便能得到精确解。在将任意初始位置下的冗余机械臂轨迹规划任务转换为二次规划问题后,利用所提出的神经网络进行计算,得出的关节角轨迹导致末端执行器完成封闭轨迹跟踪,且关节角严格返回初始位置,以实现可重复运动。使用MATLAB/SIMULINK对时变矩阵计算问题和机器人轨迹规划任务分别进行仿真,通过比较分别采用渐近网络模型和终态网络模型时的计算过程与结果可以看出,使用终态网络模型的计算过程收敛快且显著提高了计算精度。对不同时变计算问题的求解体现了所提神经网络的应用背景。

关键词: 工业机器人, 广义逆, 轨迹规划, 矩阵逆, 终态神经网络

Abstract: Conventional computing methods,by using recurrent neural networks,ensure the asymptotic convergence of the computing error such that the error converges to zero and the exact solution can be obtained as time approaches infinity.In this paper,a novel model of terminal recurrent neural networks was presented to address online computation problems arising from time-varying matrices.Such kind of network model is of the characteristics of the limited values of the right-hand side function and the finite settling time.Firstly,the shortcoming of asymptotically convergent network models in solving time-varying computational problems is analyzed,and the necessity of introducing the terminal network models is given.Then,the dynamics of the terminal network is characterized with the derivation for the expression of the settling time.For solving the problems of inverse and genera-lized inverses of time-varying matrices,an error function is defined,a terminal recurrent neural network is constructed based on the error function,so that the accurate solution can be achieved.For the path planning of industrial manipulators,the end effector tracks the closed trajectory by applying the terminal neural network,the joint angle returns to the initial position,and the repetitive motion is conducted in the presence of arbitrary initial position.MATLAB/SIMULINK is used for simulation of solving time-varying matrix computing problems and trajectory planning tasks of manipulators.By comparing the results obtained by the asymptotic network and the terminal network,it can be seen that the computing process using the terminal network converges in finite time and the computing accuracy is improved significantly.The presented solutions for different time-varying computing problems exhibit the applicability of the proposed terminal networks.

Key words: Generalized inverses, Industrial manipulators, Inverse matrix, Path planning, Terminal neural networks

中图分类号: 

  • TP18
[1]HOPFIELD J J.Neurons with graded response have collective computational properties like those of two-state neurons[J].Proceedings of the National Academy of Sciences,1984,81(10):3088-3092.
[2]KENNEDY M P,CHUA L O.Neural networks for nonlinear programming [J].IEEE Transactions on Circuits and Systems,1988,35(5):554-562.
[3]RODRIGUEZ-VAZQUEZ A,DOMINGUEZ-CASTRO R,RUEDA A,et al.Nonlinear switched capacitor neural networks for optimization problems [J].IEEE Transactions on Circuits and Systems,1990,37(3):384-398.
[4]LIU S,WANG J.A simplified dual neural network for quadratic programming with its KWTA application [J].IEEE Transactions on Neural Networks,2006,17(6):1500-1510.
[5]ROBERT H,STURGES.Analog matrix inversion (robot kinematics) [J].IEEE Journal on Robotics & Automation,2002,4(2):157-162.
[6]YEUNG K S,KUMBI F.Symbolic matrix inversion with application to electronic circuits[J].IEEE Transactions on Circuits &Systems,1988,35(2):235-238.
[7]EI-AMAWY A.A systolic architecture for fast dense matrix inversion [J].IEEE Transactions on Computers,1989,38(3):449-445.
[8]WANG Y Q,GOOI JH B.New ordering methods for space matrix inversion via diagonalization [J].IEEE Transactions on Power Systems,1997,12(3):1298-1305.
[9]ZHANG Y N,JIANG D,WANG J.A recurrent neural network for solving Sylvester equation with time-varying coefficients [J].IEEE Transactions on Neural Networks,2002,13(5):1053-1063.
[10]ZHANG Y N,GE S Z.Design and analysis of a general recurrent neural network model for time-varying matrix inversion [J].IEEE Transactions on Neural Networks,2005,16(6):1477-1490.
[11]SHI Y,QIU B,CHEN D,et al.Proposing and validation of new four-point finite-difference formula with manipulator application [J].IEEE Transactions on Industrial Informatics,2018,14(4):1323-1333.
[12]COURRIEU P.Fast computation of moore-penrose inverse matrices [J].Neural Information Processing Letters and Reviews,2005,8(2):25-29.
[13]GUO W B,HUANG T.Method of elementary transformation to compute Moore-Penrose inverse [J].Applied Mathematics and Computation,2010,216(5):1614-1617.
[14]WANG J.Recurrent neural network for computing pseudoinverses of rank-deficient matrices [J].Siam Journal on Scientific Computing,1997,18(5):1479-1493.
[15]WU G,WANG J,HOOTMAN J.A recurrent neural network for computing pseudoinverse matrices [J].Mathematical and Computer Modelling,1994,20(1):13-21.
[16]LI S,LI Y M,WANG Z.A class of finite-Time dual neural networks for solving quadratic programming problems and its k-winners-take-all application [J].Neural Networks,2013,39(39):27-39.
[17]LI S,LI Y M.Nonlinearly activated neural network for solving time-varying complex Sylvester equation [J].IEEE Transactions on Cybernetics,2014,44(8):1397-1407.
[18]SUN M X,YU X F,KONG Y.Terminal neural computing:finite-time convergence and the related application [J].Journal of Zhejiang University of Technology,2015,43(3):311-317.
[19]XIAO L,LIAO B,LI S,et al.Design and analysis of FTZNN ap- plied to the real-time solution of a nonstationary Lyapunov equation and tracking control of a wheeled mobile manipulator [J].IEEE Transactions on Industrial Informatics,2018,14(1):98-105.
[20]XIAO L,LIAO B L,LI S,et al.Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations [J].Neural Networks,2018,98:102-113.
[21]HOLLERBACH J,SUH K.Redundancy resolution of manipulators through torque optimization [J].IEEE Journal of Robotics and Automation,1987,3(4):308-316.
[22]TCHON K,JAKUBIAK J.A repeatable inverse kinematics algorithm with linear invariant subspaces for mobile manipulators[J].IEEE Transactions on Systems Man and Cybernetics Part B,2005,35(5):1051-1057.
[23]ZHANG Y N,WANG J,XIA Y S.A dual neural network for redundancy resolution of kinematically redundant manipulators subject to joint limits and joint velocity limits [J].IEEE Tran-sactions on Neural Networks,2003,14(3):658-667.
[24]GUO D S,ZHANG Y N.Acceleration-level inequality-based MAN scheme for obstacle avoidance of redundant robot manipu-lators[J].IEEE Transactions on Industrial Electronics,2014,61(12):6903-6914.
[25]LI S,ZHANG Y N,LONG J.Kinematic control of redundant manipulators using neural networks [J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(10):2243-2254.
[26]JIN L,ZHANG Y,LI S.Integration-enhanced zhang neural network for real-time-varying matrix inversion in the presence of various kinds of noises [J].IEEE Transactions on Neural Networks and Learning Systems,2016,27(12):2615-2627.
[27]LI S,WANG H Q,RAFIQUE U M.A novelrecurrent neural network for manipulator control with improved noise tolerance [J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(5):1908-1918.
[1] 何晓, 周佳立, 吴超.
面向铣削机器人的低成本精确标定及刀路拟合方法
Low Cost Accurate Calibration and Tool Path Fitting Method for Milling Robot
计算机科学, 2022, 49(7): 187-195. https://doi.org/10.11896/jsjkx.210500135
[2] 孔颖, 孙明轩.
基于终态神经网络的冗余机械臂重复运动规划
Repeatable Motion Planning of Redundant Manipulators Based on Terminal Neural Networks
计算机科学, 2018, 45(12): 201-205. https://doi.org/10.11896/j.issn.1002-137X.2018.12.033
[3] 孔颖, 孙明轩.
Sylvester时变矩阵方程求解的终态神经网络算法
Terminal Neural Network Algorithm for Solution of Time-varying Sylvester Matrix Equations
计算机科学, 2018, 45(10): 207-211. https://doi.org/10.11896/j.issn.1002-137X.2018.10.038
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!