Computer Science ›› 2020, Vol. 47 ›› Issue (1): 212-218.doi: 10.11896/jsjkx.181001898
• Artificial Intelligence • Previous Articles Next Articles
SUN Ming-xuan,WENG Ding-en,ZHANG Yu
CLC Number:
[1]HOPFIELD J J.Neurons with graded response have collective computational properties like those of two-state neurons[J].Proceedings of the National Academy of Sciences,1984,81(10):3088-3092. [2]KENNEDY M P,CHUA L O.Neural networks for nonlinear programming [J].IEEE Transactions on Circuits and Systems,1988,35(5):554-562. [3]RODRIGUEZ-VAZQUEZ A,DOMINGUEZ-CASTRO R,RUEDA A,et al.Nonlinear switched capacitor neural networks for optimization problems [J].IEEE Transactions on Circuits and Systems,1990,37(3):384-398. [4]LIU S,WANG J.A simplified dual neural network for quadratic programming with its KWTA application [J].IEEE Transactions on Neural Networks,2006,17(6):1500-1510. [5]ROBERT H,STURGES.Analog matrix inversion (robot kinematics) [J].IEEE Journal on Robotics & Automation,2002,4(2):157-162. [6]YEUNG K S,KUMBI F.Symbolic matrix inversion with application to electronic circuits[J].IEEE Transactions on Circuits &Systems,1988,35(2):235-238. [7]EI-AMAWY A.A systolic architecture for fast dense matrix inversion [J].IEEE Transactions on Computers,1989,38(3):449-445. [8]WANG Y Q,GOOI JH B.New ordering methods for space matrix inversion via diagonalization [J].IEEE Transactions on Power Systems,1997,12(3):1298-1305. [9]ZHANG Y N,JIANG D,WANG J.A recurrent neural network for solving Sylvester equation with time-varying coefficients [J].IEEE Transactions on Neural Networks,2002,13(5):1053-1063. [10]ZHANG Y N,GE S Z.Design and analysis of a general recurrent neural network model for time-varying matrix inversion [J].IEEE Transactions on Neural Networks,2005,16(6):1477-1490. [11]SHI Y,QIU B,CHEN D,et al.Proposing and validation of new four-point finite-difference formula with manipulator application [J].IEEE Transactions on Industrial Informatics,2018,14(4):1323-1333. [12]COURRIEU P.Fast computation of moore-penrose inverse matrices [J].Neural Information Processing Letters and Reviews,2005,8(2):25-29. [13]GUO W B,HUANG T.Method of elementary transformation to compute Moore-Penrose inverse [J].Applied Mathematics and Computation,2010,216(5):1614-1617. [14]WANG J.Recurrent neural network for computing pseudoinverses of rank-deficient matrices [J].Siam Journal on Scientific Computing,1997,18(5):1479-1493. [15]WU G,WANG J,HOOTMAN J.A recurrent neural network for computing pseudoinverse matrices [J].Mathematical and Computer Modelling,1994,20(1):13-21. [16]LI S,LI Y M,WANG Z.A class of finite-Time dual neural networks for solving quadratic programming problems and its k-winners-take-all application [J].Neural Networks,2013,39(39):27-39. [17]LI S,LI Y M.Nonlinearly activated neural network for solving time-varying complex Sylvester equation [J].IEEE Transactions on Cybernetics,2014,44(8):1397-1407. [18]SUN M X,YU X F,KONG Y.Terminal neural computing:finite-time convergence and the related application [J].Journal of Zhejiang University of Technology,2015,43(3):311-317. [19]XIAO L,LIAO B,LI S,et al.Design and analysis of FTZNN ap- plied to the real-time solution of a nonstationary Lyapunov equation and tracking control of a wheeled mobile manipulator [J].IEEE Transactions on Industrial Informatics,2018,14(1):98-105. [20]XIAO L,LIAO B L,LI S,et al.Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations [J].Neural Networks,2018,98:102-113. [21]HOLLERBACH J,SUH K.Redundancy resolution of manipulators through torque optimization [J].IEEE Journal of Robotics and Automation,1987,3(4):308-316. [22]TCHON K,JAKUBIAK J.A repeatable inverse kinematics algorithm with linear invariant subspaces for mobile manipulators[J].IEEE Transactions on Systems Man and Cybernetics Part B,2005,35(5):1051-1057. [23]ZHANG Y N,WANG J,XIA Y S.A dual neural network for redundancy resolution of kinematically redundant manipulators subject to joint limits and joint velocity limits [J].IEEE Tran-sactions on Neural Networks,2003,14(3):658-667. [24]GUO D S,ZHANG Y N.Acceleration-level inequality-based MAN scheme for obstacle avoidance of redundant robot manipu-lators[J].IEEE Transactions on Industrial Electronics,2014,61(12):6903-6914. [25]LI S,ZHANG Y N,LONG J.Kinematic control of redundant manipulators using neural networks [J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(10):2243-2254. [26]JIN L,ZHANG Y,LI S.Integration-enhanced zhang neural network for real-time-varying matrix inversion in the presence of various kinds of noises [J].IEEE Transactions on Neural Networks and Learning Systems,2016,27(12):2615-2627. [27]LI S,WANG H Q,RAFIQUE U M.A novelrecurrent neural network for manipulator control with improved noise tolerance [J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(5):1908-1918. |
[1] | WANG Bing, WU Hong-liang, NIU Xin-zheng. Robot Path Planning Based on Improved Potential Field Method [J]. Computer Science, 2022, 49(7): 196-203. |
[2] | TAN Ren-shen, XU Long-bo, ZHOU Bing, JING Zhao-xia, HUANG Xiang-sheng. Optimization and Simulation of General Operation and Maintenance Path Planning Model for Offshore Wind Farms [J]. Computer Science, 2022, 49(6A): 795-801. |
[3] | CHEN Jing-yu, GUO Zhi-jun, YIN Ya-kun. Full Traversal Path Planning and System Design of Intelligent Lawn Mower Based on Hybrid Algorithm [J]. Computer Science, 2021, 48(6A): 633-637. |
[4] | DU Wan-ru, WANG Xiao-yin, TIAN Tao, ZHANG Yue. Artificial Potential Field Path Planning Algorithm for Unknown Environment and Dynamic Obstacles [J]. Computer Science, 2021, 48(2): 250-256. |
[5] | GUO Qi-cheng, DU Xiao-yu, ZHANG Yan-yu, ZHOU Yi. Three-dimensional Path Planning of UAV Based on Improved Whale Optimization Algorithm [J]. Computer Science, 2021, 48(12): 304-311. |
[6] | ZHAO Yang, NI Zhi-wei, ZHU Xu-hui, LIU Hao, RAN Jia-min. Multi-worker and Multi-task Path Planning Based on Improved Lion Evolutionary Algorithm forSpatial Crowdsourcing Platform [J]. Computer Science, 2021, 48(11A): 30-38. |
[7] | CHEN Ji-qing, TAN Cheng-zhi, MO Rong-xian, WANG Zhi-kui, WU Jia-hua, ZHAO Chao-yang. Path Planning of Mobile Robot with A* Algorithm Based on Artificial Potential Field [J]. Computer Science, 2021, 48(11): 327-333. |
[8] | ZHAO Xiao-wei, ZHU Xiao-jun, HAN Zhou-qing. Hover Location Selection and Flight Path Optimization for UAV for Localization Applications [J]. Computer Science, 2021, 48(11): 345-355. |
[9] | WANG Zi-qiang, HU Xiao-guang, LI Xiao-xiao, DU Zhuo-qun. Overview of Global Path Planning Algorithms for Mobile Robots [J]. Computer Science, 2021, 48(10): 19-29. |
[10] | YANG De-cheng, LI Feng-qi, WANG Yi, WANG Sheng-fa, YIN Hui-shu. Intelligent 3D Printing Path Planning Algorithm [J]. Computer Science, 2020, 47(8): 267-271. |
[11] | JIANG Chen-kai, LI Zhi, PAN Shu-bao, WANG Yong-jun. Collision-free Path Planning of AGVs Based on Improved Dijkstra Algorithm [J]. Computer Science, 2020, 47(8): 272-277. |
[12] | ZHOU Jun and WANG Tian-qi. Single Departure and Arrival Procedure Optimization in Airport Terminal Area Based on Branch and Bound Method [J]. Computer Science, 2020, 47(6A): 552-555. |
[13] | ZENG Wei-liang, WU Miao-sen, SUN Wei-jun, XIE Sheng-li. Comprehensive Review of Autonomous Taxi Dispatching Systems [J]. Computer Science, 2020, 47(5): 181-189. |
[14] | WANG Wei-guang, YIN Jian, QIAN Xiang-li, ZHOU Zi-hang. Realtime Multi-obstacle Avoidance Algorithm Based on Dynamic System [J]. Computer Science, 2020, 47(11A): 111-115. |
[15] | ZHOU Xin-yue, QIAN Li-ping, HUANG Yu-pin, WU Yuan. Optimization Method of Electric Vehicles Charging Scheduling Based on Ant Colony [J]. Computer Science, 2020, 47(11): 280-285. |
|