Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2019, Vol. 46 ›› Issue (3): 74-81.doi: 10.11896/j.issn.1002-137X.2019.03.009

• 综述 • 上一篇    下一篇

生成对抗网络GAN综述

程显毅1,2,谢璐2,朱建新2,3,胡彬2,施佺2   

  1. (硅湖职业技术学院 江苏 昆山 215300)1
    (南通先进通信技术研究院(南通大学) 江苏 南通 226019)2
    (武汉理工大学信息工程学院 武汉 430010)3
  • 收稿日期:2018-02-12 修回日期:2018-06-09 出版日期:2019-03-15 发布日期:2019-03-22
  • 通讯作者: 程显毅(1956-),男,教授,主要研究方向为机器学习、自然语言处理,E-mail:xycheng@ntu.edu.cn
  • 作者简介:谢璐(1990-),女,硕士生,主要研究方向为深度学习;朱建新((1976-),男,博士生,副教授,主要研究方向为大数据技术;胡彬(1980-),男,博士,主要研究方向为图像处理;施佺(1973-),男,教授,主要研究方向为智能信息处理。
  • 基金资助:
    国家自然科学基金项目(61771265,61340037),江苏省现代教育技术研究课题(2017-R-54131),南通大学-南通智能信息技术联合研究中心开放课题(KFKT2016B06)资助

Review of Generative Adversarial Network

CHENG Xian-yi1,2,XIE Lu2,ZHU Jian-xin2,3,HU Bin2,SHI Quan2   

  1. (Silicon Lake College,Kunshan,Jiangsu 215300,China)1
    (Nantong Research Institute for Advanced Communication Technologies(Nantong University),Nantong,Jiangsu 226019,China)2
    (School of Information Engineering,Wuhan University of Technology,Wuhan 430010,China)3
  • Received:2018-02-12 Revised:2018-06-09 Online:2019-03-15 Published:2019-03-22

摘要: 人能够理解事物运动的方式,因此对事物未来发展的预测比机器准。不过,作为一种新的深度神经网络系统,GAN(Generative Adversarial Network)生成的数据非常逼真,连人也无法辨别数据是真实的还是生成的。从某种意义上讲,GAN为指导人工智能系统完成复杂任务提供了一种全新的思路,让机器成为了一个专家。首先,讨论了GAN的基本模型和一些改进的GAN模型;然后,展示了GAN在超分辨图像生成、由文本描述生成图像、艺术风格图像生成和短视频生成方面的应用成果;最后,探讨了GAN在理论、架构和应用方面所面临的问题和其未来的研究方向。

关键词: 判别器, 人工智能, 深度学习, 生成对抗网络, 生成器

Abstract: Humans can understand the way of movement,so they can predictthe future development of things more accurately than machines.But GAN (Generative Adversarial Network) is a new neural Network system,its dataare very lifelike,even people can’t identify whether the data are real or generated.In a sense,GAN provides a brand new thought for guiding the artificial intelligence system to accomplish complex tasks,and makes the machine a specialist.In this paper,first of all,the basic model and some improvements model of GAN were discussed.Then,some application achievements of GAN were shown,such as the images generated by the super resolution,by a text description,by the artistic style and short video generated.Finally,some problems of theory,architecture,and application in the future research were discussed

Key words: Artificial intelligence, Deep learning, Discriminator, GAN, Generator

中图分类号: 

  • TP181
[1]GOODFELLOW I,BENGIO Y,COURVILLE A.Deep Learning[M].Cambridge,UK:MIT Press,2016:23-34.
[2]LIU Q,ZHAI J H,ZHANG Z Z,et al.A Survey on Deep Reinforcement Learning[J].Chinese Journal of Computers,2017,40(1):1-28.(in Chinese)
刘全,翟建伟,章宗长,等.深度强化学习综述[J].计算机学报,2017,40(1):1-28.
[3]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Gene-
rative adversarial nets[C]∥Proceedings of the 2014 Conference on Advances in Neural Information Processing Systems 27.Montreal,Canada:Curran Associates,2014:2672-2680.
[4]YU L T,ZHANG W N,WANG J,et al.SeqGAN:sequence gene-
rative adversarial nets with policy gradient[J/OL].https://arxiv.org/abs/1609.05473.
[5]SHAKIR M,LAKSHMINARAYANAN B.Learning in Implicit Generative Models[J/OL].https://openreview.net/pdf?id=B16Jem9xe.
[6]CHENG C.Interpretation of the GAN and its progress in 2016[EB/OL].https://zhuan lan.zhihu.com/p/25000523?refer=dlclass.
[7]HU W W,TAN Y.Generating adversarial malware examples
for black-box attacks based on GAN[J/OL].https:// openreview.net/pdf?id=7xes.
[8]MIRZA M,OSINDERO S.Conditional Generative Adversarial
Nets[J].Computer Science,2014,27(8):2672-2680.
[9]DENTON E L,CHINTALA S,FERGUS R.Deep Generative
Image Models using a Laplacian Pyramid of Adversarial Networks[C]∥Advances in Neural Information Processing Systems.2015:1486-1494.
[10]RAVANBAKHSH S,LANUSSE F,MANDELBAUM R,et al.Enabling Dark Energy Science with Deep Generative Models of Galaxy Images[J/OL].https://arxiv.org/abs/1609.05796.
[11]SEBASTIAN N,CSEKE B,TOMIOKA R.f-GAN:Training
Generative Neural Samplers using Variational Divergence Minimization[J/OL].https://arxiv.org/abs/1606.00709.
[12]ZHAO J B,MICHAEL M,YANN L C.Energy-based Generative Adversarial Network[J/OL].https://arxiv.org/abs/1609.03126.
[13]HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]∥Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas,NV,USA:IEEE,2016:770-778.
[14]CHEN X,DUAN Y,HOUTHOOFT R,et al.InfoGAN:Inter-
pretable Representation Learning by Information Maximizing Generative Adversarial Nets[J/OL].https://arxiv.org/abs/1606.03657.
[15]GANIN Y,USTINOVA E,AJAKAN H,et al.Domain adversa-
rial training of neural networks[J].Journal of Machine Learning Research,2016,17(59):1-35
[16]TOBIAS J.Unsupervised and semi-supervised learning with categorical generative adversarial networks[C]∥ICLR-2016,Springenberg.2016:876-884.
[17]CHEN W Z,WANG H,LI Y Y et al.Synthesizing training images for boosting human 3D pose estimation[C]∥Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV).Stanford,CA,USA:IEEE,2016:479-488.
[18]PROBST M.Generative Adversarial Networks in Estimation of Distribution Algorithms for Combinatorial Optimization[J/OL].https://arxiv.org/abs/1509.09235.
[19]GREGOR K,DANIHELKA I,GRAVES A,et al.DRAW:
A recurrent neural network for image generation[J/OL].https://arxiv.org/abs/ 1502.04623.
[20]RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[J/OL].https://arxiv.org/abs/ 1511.06434.
[21]AUGUSTUS O,OLAH C,SHLENS J.Conditi- onal Image Synthesis With Auxiliary Classifier GANs[J/OL].https://arxiv.org/abs/1610.09585.
[22]HANOCK K,ZHANG B T.Generating Images Part by Part
with Composite Generative Adversarial Networks[J/OL].https://arxiv.org/abs/1607.05387.
[23]KURAKIN A,GOODFELLOW I,BENGIO S.Adversarial exam-
ples in the physical world[J/OL].https://arxiv.org/abs/1607.02533.
[24]ANTONIA C,BHARATH A A.Task Specific Adversarial Cost Function[J/OL].[2017-01-17].http://Creswell.com/caa?arXiv:1609.08661.
[25]CHE T,LI Y,JACOB A P,et al.Mode Regularized Generative Adversarial Networks[C/OL].[2017-01-30].https://openreview.net/pdf?id=HJKkY35le.
[26]IM D J,MA H,KIM C D,et al.Generative Adversarial Paralleli-
zation[C/OL].https://openreview.net/pdf?id=Sk8J83oee.
[27]METZ L,POOLE B,PFAU D,et al.Unrolled Generative Adversarial Networks[C/OL].https://openre view.net/pdf?id=BydrOIcle.
[28]WARDE-FARLEY D,BENGIO Y.Improving Generative Ad-
versarial Networks with Denoising Feature Matching[C/OL].https://openreview.net/pdf?id=S1X7nhsxl.
[29]CHRISTIAN L.Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[J/OL].https://ar-xiv.org/abs/1609.04802.
[30]ALEXEY D,BROX T.Generating images with perceptual similarity metrics based on deep networks[J/OL].https://arxiv.org/abs/1602.02644.
[31]REED S,AKATA Z,YAN X,et al.Generative adversarial text to image synthesis[C]∥International Conference on International Conference on Machine Learning.JMLR.org,2016:1060-1069.
[32]LARSEN A B L,SNDERBY S K,WINTHER O.Autoenco-
ding beyond pixels using a learned similarity metric[J/OL].[2015-11-02].https://arxiv.org/abs/1512.09300.
[33]VONDRICK C,PIRSIAVASH H,TORRALBA A.Generating Videos with Scene Dynamics[C]∥NIPS-2016.Stanford,CA:IEEE,2016:562-570.
[34]SPRINGENBERG J T.Unsupervised and Semi-supervised Lear-
ning withCategorical Generative Adversarial Networks[J/OL].https://arxiv.org/abs/1511.06390.
[35]LEON A.Gatys,Alexander S.Ecker,Matthias Bethge.A Neural Algorithm of Artistic Style[J/OL].https://arxiv.org/abs/1508.06576.
[36]ZHU H,LI Q M,LI D Q.Facial Multi-landmarks Localization Based on Single Convolution Neural Network[J].ComputerScien-ce,2018,45(4):273-279.(in Chinese)
朱虹,李千目,李德强.基于单个卷积神经网络的面部多特征点定位[J].计算机科学,2018,45(4):273-279.
[37]REN J,HU X F,LI N.Transfer Prediction Learning Based on Hybrid of SDA and SVR[J].Computer Science,2018,45(1):281-286.(in Chinese)
任俊,胡晓峰,李宁.基于SDA与SVR混合模型的迁移学习预测算法[J].计算机科学,2018,45(1):281-286.
[38]WANG K F,GOU C,DUAN Y J,et al.Generative Adversarial Networks:The State of the Art and Beyond[J].Acta Automatica Sinica,2017,43(3):321-333.(in Chinese)
王坤峰,苟超,段艳杰,等.生成式对抗网络GAN的研究进展与展望[J].自动化学报,2017,43(3):321-333.
[39]ODENA A.Semi-SupervisedLearning with Generative Adversarial Networks[J/OL].https://arxiv.org/abs/1508.06576.
[40]WANG X,GUPTA A.Generative Image Modeling using Style and Structure Adversarial Networks[J/OL].https://arxiv.org/abs/1603.05631.
[41]DENTON E L,CHINTALA S,FERGUS R.Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks[C]∥Advances in Neural Information Processing Systems.2015:1486-1494.
[42]EDWARDS H,STORKEY A.Censoring Representations with an Adversary[J/OL].[2015-01-26].https://arxiv.org/abs/1511.05897.
[43]ZHOU Z H,FENG J.Deep Forest:Towards An Alternative to Deep Neural Networks[J/OL].https://arxiv.org/abs/1702.08835.
[1] 张佳, 董守斌.
基于评论方面级用户偏好迁移的跨领域推荐算法
Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer
计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131
[2] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[3] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[4] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[5] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[6] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[7] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[8] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[9] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[10] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[11] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[12] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[13] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[14] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[15] 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋.
改进Faster R-CNN的光学遥感飞机目标检测
Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN
计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!