计算机科学 ›› 2019, Vol. 46 ›› Issue (3): 74-81.doi: 10.11896/j.issn.1002-137X.2019.03.009
程显毅1,2,谢璐2,朱建新2,3,胡彬2,施佺2
CHENG Xian-yi1,2,XIE Lu2,ZHU Jian-xin2,3,HU Bin2,SHI Quan2
摘要: 人能够理解事物运动的方式,因此对事物未来发展的预测比机器准。不过,作为一种新的深度神经网络系统,GAN(Generative Adversarial Network)生成的数据非常逼真,连人也无法辨别数据是真实的还是生成的。从某种意义上讲,GAN为指导人工智能系统完成复杂任务提供了一种全新的思路,让机器成为了一个专家。首先,讨论了GAN的基本模型和一些改进的GAN模型;然后,展示了GAN在超分辨图像生成、由文本描述生成图像、艺术风格图像生成和短视频生成方面的应用成果;最后,探讨了GAN在理论、架构和应用方面所面临的问题和其未来的研究方向。
中图分类号:
[1]GOODFELLOW I,BENGIO Y,COURVILLE A.Deep Learning[M].Cambridge,UK:MIT Press,2016:23-34. [2]LIU Q,ZHAI J H,ZHANG Z Z,et al.A Survey on Deep Reinforcement Learning[J].Chinese Journal of Computers,2017,40(1):1-28.(in Chinese) 刘全,翟建伟,章宗长,等.深度强化学习综述[J].计算机学报,2017,40(1):1-28. [3]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Gene- rative adversarial nets[C]∥Proceedings of the 2014 Conference on Advances in Neural Information Processing Systems 27.Montreal,Canada:Curran Associates,2014:2672-2680. [4]YU L T,ZHANG W N,WANG J,et al.SeqGAN:sequence gene- rative adversarial nets with policy gradient[J/OL].https://arxiv.org/abs/1609.05473. [5]SHAKIR M,LAKSHMINARAYANAN B.Learning in Implicit Generative Models[J/OL].https://openreview.net/pdf?id=B16Jem9xe. [6]CHENG C.Interpretation of the GAN and its progress in 2016[EB/OL].https://zhuan lan.zhihu.com/p/25000523?refer=dlclass. [7]HU W W,TAN Y.Generating adversarial malware examples for black-box attacks based on GAN[J/OL].https:// openreview.net/pdf?id=7xes. [8]MIRZA M,OSINDERO S.Conditional Generative Adversarial Nets[J].Computer Science,2014,27(8):2672-2680. [9]DENTON E L,CHINTALA S,FERGUS R.Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks[C]∥Advances in Neural Information Processing Systems.2015:1486-1494. [10]RAVANBAKHSH S,LANUSSE F,MANDELBAUM R,et al.Enabling Dark Energy Science with Deep Generative Models of Galaxy Images[J/OL].https://arxiv.org/abs/1609.05796. [11]SEBASTIAN N,CSEKE B,TOMIOKA R.f-GAN:Training Generative Neural Samplers using Variational Divergence Minimization[J/OL].https://arxiv.org/abs/1606.00709. [12]ZHAO J B,MICHAEL M,YANN L C.Energy-based Generative Adversarial Network[J/OL].https://arxiv.org/abs/1609.03126. [13]HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]∥Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas,NV,USA:IEEE,2016:770-778. [14]CHEN X,DUAN Y,HOUTHOOFT R,et al.InfoGAN:Inter- pretable Representation Learning by Information Maximizing Generative Adversarial Nets[J/OL].https://arxiv.org/abs/1606.03657. [15]GANIN Y,USTINOVA E,AJAKAN H,et al.Domain adversa- rial training of neural networks[J].Journal of Machine Learning Research,2016,17(59):1-35 [16]TOBIAS J.Unsupervised and semi-supervised learning with categorical generative adversarial networks[C]∥ICLR-2016,Springenberg.2016:876-884. [17]CHEN W Z,WANG H,LI Y Y et al.Synthesizing training images for boosting human 3D pose estimation[C]∥Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV).Stanford,CA,USA:IEEE,2016:479-488. [18]PROBST M.Generative Adversarial Networks in Estimation of Distribution Algorithms for Combinatorial Optimization[J/OL].https://arxiv.org/abs/1509.09235. [19]GREGOR K,DANIHELKA I,GRAVES A,et al.DRAW: A recurrent neural network for image generation[J/OL].https://arxiv.org/abs/ 1502.04623. [20]RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[J/OL].https://arxiv.org/abs/ 1511.06434. [21]AUGUSTUS O,OLAH C,SHLENS J.Conditi- onal Image Synthesis With Auxiliary Classifier GANs[J/OL].https://arxiv.org/abs/1610.09585. [22]HANOCK K,ZHANG B T.Generating Images Part by Part with Composite Generative Adversarial Networks[J/OL].https://arxiv.org/abs/1607.05387. [23]KURAKIN A,GOODFELLOW I,BENGIO S.Adversarial exam- ples in the physical world[J/OL].https://arxiv.org/abs/1607.02533. [24]ANTONIA C,BHARATH A A.Task Specific Adversarial Cost Function[J/OL].[2017-01-17].http://Creswell.com/caa?arXiv:1609.08661. [25]CHE T,LI Y,JACOB A P,et al.Mode Regularized Generative Adversarial Networks[C/OL].[2017-01-30].https://openreview.net/pdf?id=HJKkY35le. [26]IM D J,MA H,KIM C D,et al.Generative Adversarial Paralleli- zation[C/OL].https://openreview.net/pdf?id=Sk8J83oee. [27]METZ L,POOLE B,PFAU D,et al.Unrolled Generative Adversarial Networks[C/OL].https://openre view.net/pdf?id=BydrOIcle. [28]WARDE-FARLEY D,BENGIO Y.Improving Generative Ad- versarial Networks with Denoising Feature Matching[C/OL].https://openreview.net/pdf?id=S1X7nhsxl. [29]CHRISTIAN L.Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[J/OL].https://ar-xiv.org/abs/1609.04802. [30]ALEXEY D,BROX T.Generating images with perceptual similarity metrics based on deep networks[J/OL].https://arxiv.org/abs/1602.02644. [31]REED S,AKATA Z,YAN X,et al.Generative adversarial text to image synthesis[C]∥International Conference on International Conference on Machine Learning.JMLR.org,2016:1060-1069. [32]LARSEN A B L,SNDERBY S K,WINTHER O.Autoenco- ding beyond pixels using a learned similarity metric[J/OL].[2015-11-02].https://arxiv.org/abs/1512.09300. [33]VONDRICK C,PIRSIAVASH H,TORRALBA A.Generating Videos with Scene Dynamics[C]∥NIPS-2016.Stanford,CA:IEEE,2016:562-570. [34]SPRINGENBERG J T.Unsupervised and Semi-supervised Lear- ning withCategorical Generative Adversarial Networks[J/OL].https://arxiv.org/abs/1511.06390. [35]LEON A.Gatys,Alexander S.Ecker,Matthias Bethge.A Neural Algorithm of Artistic Style[J/OL].https://arxiv.org/abs/1508.06576. [36]ZHU H,LI Q M,LI D Q.Facial Multi-landmarks Localization Based on Single Convolution Neural Network[J].ComputerScien-ce,2018,45(4):273-279.(in Chinese) 朱虹,李千目,李德强.基于单个卷积神经网络的面部多特征点定位[J].计算机科学,2018,45(4):273-279. [37]REN J,HU X F,LI N.Transfer Prediction Learning Based on Hybrid of SDA and SVR[J].Computer Science,2018,45(1):281-286.(in Chinese) 任俊,胡晓峰,李宁.基于SDA与SVR混合模型的迁移学习预测算法[J].计算机科学,2018,45(1):281-286. [38]WANG K F,GOU C,DUAN Y J,et al.Generative Adversarial Networks:The State of the Art and Beyond[J].Acta Automatica Sinica,2017,43(3):321-333.(in Chinese) 王坤峰,苟超,段艳杰,等.生成式对抗网络GAN的研究进展与展望[J].自动化学报,2017,43(3):321-333. [39]ODENA A.Semi-SupervisedLearning with Generative Adversarial Networks[J/OL].https://arxiv.org/abs/1508.06576. [40]WANG X,GUPTA A.Generative Image Modeling using Style and Structure Adversarial Networks[J/OL].https://arxiv.org/abs/1603.05631. [41]DENTON E L,CHINTALA S,FERGUS R.Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks[C]∥Advances in Neural Information Processing Systems.2015:1486-1494. [42]EDWARDS H,STORKEY A.Censoring Representations with an Adversary[J/OL].[2015-01-26].https://arxiv.org/abs/1511.05897. [43]ZHOU Z H,FENG J.Deep Forest:Towards An Alternative to Deep Neural Networks[J/OL].https://arxiv.org/abs/1702.08835. |
[1] | 张佳, 董守斌. 基于评论方面级用户偏好迁移的跨领域推荐算法 Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer 计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131 |
[2] | 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺. 时序知识图谱表示学习 Temporal Knowledge Graph Representation Learning 计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204 |
[3] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[4] | 汤凌韬, 王迪, 张鲁飞, 刘盛云. 基于安全多方计算和差分隐私的联邦学习方案 Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy 计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108 |
[5] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[6] | 王剑, 彭雨琦, 赵宇斐, 杨健. 基于深度学习的社交网络舆情信息抽取方法综述 Survey of Social Network Public Opinion Information Extraction Based on Deep Learning 计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099 |
[7] | 郝志荣, 陈龙, 黄嘉成. 面向文本分类的类别区分式通用对抗攻击方法 Class Discriminative Universal Adversarial Attack for Text Classification 计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077 |
[8] | 姜梦函, 李邵梅, 郑洪浩, 张建朋. 基于改进位置编码的谣言检测模型 Rumor Detection Model Based on Improved Position Embedding 计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046 |
[9] | 胡艳羽, 赵龙, 董祥军. 一种用于癌症分类的两阶段深度特征选择提取算法 Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification 计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092 |
[10] | 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮. 基于DNGAN的磁共振图像超分辨率重建算法 Super-resolution Reconstruction of MRI Based on DNGAN 计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105 |
[11] | 程成, 降爱莲. 基于多路径特征提取的实时语义分割方法 Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction 计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157 |
[12] | 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木. 中文预训练模型研究进展 Advances in Chinese Pre-training Models 计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018 |
[13] | 周慧, 施皓晨, 屠要峰, 黄圣君. 基于主动采样的深度鲁棒神经网络学习 Robust Deep Neural Network Learning Based on Active Sampling 计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044 |
[14] | 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫. 小样本雷达辐射源识别的深度学习方法综述 Survey of Deep Learning for Radar Emitter Identification Based on Small Sample 计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138 |
[15] | 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋. 改进Faster R-CNN的光学遥感飞机目标检测 Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN 计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121 |
|