Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2022, Vol. 49 ›› Issue (7): 226-235.doi: 10.11896/jsjkx.210600138

• 计算机网络 • 上一篇    下一篇

小样本雷达辐射源识别的深度学习方法综述

苏丹宁1, 曹桂涛1, 王燕楠1, 王宏2, 任赫2   

  1. 1 华东师范大学软硬件协同设计技术与应用教育部工程研究中心 上海200062
    2 中国电子科技集团第五十一研究所 上海201802
  • 收稿日期:2021-06-17 修回日期:2021-10-17 出版日期:2022-07-15 发布日期:2022-07-12
  • 通讯作者: 曹桂涛(gtcao@sei.ecnu.edu.cn)
  • 作者简介:(iranus@163.com)
  • 基金资助:
    国家自然基金科学面上项目(61871186)

Survey of Deep Learning for Radar Emitter Identification Based on Small Sample

SU Dan-ning1, CAO Gui-tao1, WANG Yan-nan1, WANG Hong2, REN He2   

  1. 1 East China Normal University MoE Engineering Research Center of SW/HW Co-design Technology and Application,Shanghai 200062,China
    2 China Electronics Technology Group Corporation No.51 Research Institute,Shanghai 201802,China
  • Received:2021-06-17 Revised:2021-10-17 Online:2022-07-15 Published:2022-07-12
  • About author:SU Dan-ning,born in 1997,postgra-duate.Her main research interests include deep learning,radar emitter identification and so on.
    CAO Gui-tao,born in 1970,Ph.D,professor.Her main research interests include artificial intelligence,image analysis and understanding,medical big data processing.
  • Supported by:
    National Natural Science Foundation of China(61871186).

摘要: 面对复杂多变的电磁环境与新体制雷达系统,传统的雷达辐射源识别方法已无法满足需求。深度学习模型可有效提取雷达信号的脉内特征,快速准确地对低信噪比、未经分选的雷达辐射源信号进行脉内调制类型识别、型号识别与个体识别。但真实环境中雷达辐射源信号难以收集,无法满足传统的深度学习训练需要,因此小样本雷达辐射源识别是目前研究的热点与难点。文中首先对近年来将基于监督学习的多种经典深度学习方法应用于小样本雷达辐射源识别的研究进行了回顾;其次,介绍了小样本学习在雷达辐射源识别领域的研究进展;最后,基于小样本雷达辐射源识别的研究现状,总结面临的挑战,提出了对未来研究方向的展望。

关键词: 雷达辐射源识别, 脉内特征, 深度学习, 小样本

Abstract: Traditional radar emitter identification methods can no longer meet the needs of identifying new-system radar emitters in the complicate and changeable electromagnetic environment.Deep learning methods can effectively extract the intra-pulse features of the unsorting radar emitter signal,quickly and accurately identify the radar intra-pulse modulation type,model type and emitter individual under complex environments such as low signal-to-noise ratio.However,in the reality,radar emitter signal is difficult to collect and cannot satisfy the training needs of traditional deep learning models.Therefore,the small sample radar emitter identification is one of hotspot and difficult questions of current research.Firstly,this paper reviews the research progress and application of various deep learning methods based on supervised learning for radar emitter recognition with small samples in recent years.Secondly,the research progress of radar emitter identification by small sample learning is introduced.Last,according to the current radar emitter identification research,the challenges and outlook for future research are put forward.

Key words: Deep learning, Intra-pulse feature, Radar emitter identification, Small sample

中图分类号: 

  • TP181
[1]LANGLEY L E.Specific emitter identification(SEI) and classical parameter fusion technology[C]//Proceedings of WESCON'93.IEEE,2002.
[2]ZHANG G Z.Research on Radar Radiator Recognition Techno-logy [D].Changsha:National University of Defense Techno-logy,2005.
[3]MARK A R.Fundamentals of Radar Signal Processing(2nded.)[M]//USA:McGraw-Hill Education,2014:213-215.
[4]JORDANOV I,PETROV N.Sets With Incomplete and Missing Data-NN Radar Signal Classification[C]//International Joint Conference on Neural Networks(IJCNN).Beijing,China,2014:218-224.
[5]HINTON G E,OSINDERO S,TEH Y W.A Fast Learning Algorithm for Deep Belief Nets[J].Neural Computation,2014,18(7):1527-1554.
[6]RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252.
[7]XU H Q,LIU G.Reviews on Radar Emitter Recognition[J].Shipment Electronic Engineering,2010,30(4):25-27.
[8]LI M,ZHU W G,CHEN W G.Study of Radar Emitter Identification Based on Machine Learning[J].Journal of Ordnance Equipment Engineering,2016,37(9):171-175.
[9]GUO S,WHITE R E,LOW M.A comparison study of radaremitter identification based on signal transients[C]//2018 IEEE Radar Conference(RadarConf18).IEEE,2018.
[10]JIN Q,WANG H Y,MA F F.An Overview of Radar Emitter Classification and Identification Methods[J].Telecommunications Technology,2019,59(3):360-368.
[11]MENG L,QU W,CAI K,et al.Overview of Radar Emitter Identification Based on Machine Learning[J].Journal of Ordnance Equipment Engineering,2020,41(10):16-21.
[12]ZHANG G Z,HUANG K S,JIANG W L,et al.Emitter feature extract method based on signal envelope[J].System Engineering and Electronic Technology,2006(6):795-797,936.
[13]CHOI H I,WILLIAM S.Improved time-frequency representation of multicomponent signals using exponential kernels[J].Acoustics,Speech and Signal Processing,IEEE Transactions,1989,37(6):862-871.
[14]KAWALEC A,OWCZAREK R.Specific emitter identification using intrapulse data[C]//Proceedings of 1st European Radar Conference.Amsterdam,Netherlands,2004:249-252.
[15]D'AGOSTINO S,FOGLIA G,PISTOIA D.Specific emitteridentification:analysis on real radar signal data [C]//Procee-dings of the 6th European Radar Conference.Rome,Italy,2009:242-245.
[16]CONNING M,POTGIETER F.Analysis of measured radar data for specific emitter identification[C]//Proceedings of IEEE Radar Conference.Arlington,VA,USA,2010:35-38.
[17]YE H H,LIU Z,JIANG W L,et al.A Comparison of Unintentional Modulation on Pulse Features with the Consideration of Doppler Effect[J].Journal of Electronics and Information,2012,34(11):2654-2659.
[18]FENG Z,LIANG M,CHU F.Recent advances in time-frequency analysis methods for machinery fault diagnosis:A review with application examples[J].Mechanical Systems & Signal Proces-sing,2013,38(1):165-205.
[19]COHEN L.Time-Frequency Distribution-A Review[J].Proceedings of the IEEE,1989,77(7):941-981.
[20]ZHANG X.On High-order statistical analysis,Modem SignalProcessing [M].Beijing:Tsinghua University Press,2015:217-228.
[21]CAI Z W,LI J D.Individual Recognition of Communication Radiator Based on Bispectrum[J].Journal of Communications,2007(2):75-79.
[22]CHENG C X,HE M H,ZHU Y Q,et al.Extraction of indivi-dual characteristics of radar emitters based on bispectrum analysis[J].System Engineering and Electronic Technology,2008(6):1046-1049.
[23]WANG C,WANG J,ZHANG X.Automatic radar waveformrecognition based on time-frequency analysis and convolutional neural network[C]//IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).2017:2437-2441.
[24]WEI S,QU Q,SU H,et al.Intra-pulse modulation radar signal recognition based on CLDN network[J].IET Radar,Sonar & Navigation,2020,14(6):803-810.
[25]ZHU K F,WANG X G,LIU Y J.Radar target recognition algorithm based on data augmentation and WACGAN under small sample conditions[J].Journal of Electronics,2020,48(6):1124-1131.
[26]SAINATH T N,VINYALS O,SENIOR A,et al.Convolu-tional,Long Short-Term Memory,fully connected Deep Neural Networks[C]//IEEE International Conference on Acoustics.IEEE,2015.
[27]HOCHREITER S,SCHMIDHUBER J.Long Short-Term Memory[J].Neural Computation,1997,9(8):1735-1780.
[28]BAGWE R,KACHHIA J,ERDOGAN A,et al.Automated Radar Signal Analysis Based on Deep Learning[C]//2020 10th Annual Computing and Communication Workshop and Confe-rence(CCWC).IEEE,2020.
[29]ZHENG Y,SHEN Y J,ZHOU Y S.Radar signal intra-pulse modulation recognition based on multi-layer two-way LSTM[J].Telemetry and remote control,2019,40(1):37-45.
[30]QIN X,HUANG J,WANG J T,et al.Individual Radar Radiator Recognition Based on Unintentional Phase Modulation Characteristics[J].Journal on Communications,2020,41(5):104-111.
[31]SCHMIDHUBE R,JÜRGE N.Deep Learning in Neural Networks:An Overview[J].Neural Netw,2015,61:85-117.
[32]BENGIO Y,LAMBLIN P,POPOVICI D,et al.Greedy layer-wise training of deep networks[C]//Advances in Neural Information Processing Systems 19,Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems.Vancouver.British Columbia,Canada,2006.
[33]VINCENT P,LAROCHELLE H,BENGIO Y,et al.Extracting and Composing Robust Features with Denoising Autoencoders[C]//Machine Learning,Proceedings of the Twenty-Fifth International Conference(ICML 2008).Helsinki,Finland,2008.
[34]MASCI J,MEIER U,CIRESAN D,et al.Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction[J].SpringerVerlag,2011(6791):52-59.
[35]ZHOU Z W,HUANG G M,GAO J,et al.A Deep Learning Radar Radiator Recognition Algorithm[J].Journal of Xidian University(Natural Science Edition),2017,44(3):83-88.
[36]GUO L M,KOU Y H,CHEN T,et al.Modulation type recognition of radar signal with low probability of interception under low signal-to-noise ratio based on stacked sparse autoencoder[J].Journal of Electronics and Information,2018,40(4):875-881.
[37]ZHANG M,WANG H,ZHOU K,et al.Low Probability of Intercept Radar Signal Recognition by Staked Autoencoder and SVM[C]//2018 10th International Conference on Wireless Communications and Signal Processing(WCSP).2018.
[38]GAO P C,JIAO S H.Radar radiator individual recognition based on variational autoencoder[J].Applied Technology,2020,47(4):59-65.
[39]ZHOU Y,WANG X,CHEN Y,et al.Specific Emitter Identification via Bispectrum-Radon Transform and Hybrid Deep Model[J].Mathematical Problems in Engineering,2020,2020(1):1-17.
[40]KONG G,JUNG M,KOIVUNEN V.Waveform Recognition in Multipath Fading using Autoencoder and CNN with Fourier Synchrosqueezing Transform[C]//IEEE International Radar Conference(RADAR).IEEE,2020:612-617.
[41]KRIZHEVSKY A,SUTSKEVER I,HINTON G.ImageNetClassification with Deep Convolutional Neural Networks[C]//NIPS.Curran Associates Inc.2012.
[42]ZEILER M D,FERGUS R.Visualizing and Understanding Convolutional Networks[C]//European Conference on Computer Vision.Springer International Publishing,2013.
[43]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-Scale Image Recognition[J/OL].https://ar-Xiv.org/abs/1409.1556.
[44]SZEGEDY C,LIU W,JIA Y,et al.Going Deeper with Convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2015:1-9.
[45]HE K,ZHANG X,REN S,et al.Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2016:770-778.
[46]LIU Z,SHI Y,ZENG Y,et al.Radar Emitter Signal Detection with Time-Frequency Image Processing and Convolutional Neural Network[C]//2019 IEEE 11th International Conference on Advanced Infocomm Technology(ICAIT).IEEE,2019.
[47]LI K.Radar Emitter Identification Based on Improved Convolutional Neural Network[C]//IEEE 3rd Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC).IEEE,2019.
[48]WANG G M,CHEN S W,HUANG J,et al.Radar signal sorting and recognition based on transfer deep learning[J].Computer Science and Applications,2019,9(9):18.
[49]SHI L M,YANG C Z,WU H C.Radar signal recognition me-thod based on deep residual network and triple loss[J].System Engineering and Electronic Technology,2020,42(11):2506-2512.
[50]SI W,WAN C,ZHANG C.Towards an accurate radar waveformrecognition algorithm based on dense CNN[J].Multimedia Tools and Applications,2021(80):1779-1792.
[51]CAI J J,LI C,ZHANG H Y.Modulation Recognition of Radar Signal Based on an Improved CNN Model[C]//2019 IEEE 7th International Conference on Computer Science and Network Technology(ICCSNT).2019:304-308.
[52]HU J,SHEN L,SUN G.Squeeze-and-excitation net orks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,USA,2018:7132-7141.
[53]QU Q,WEI S,SU H,et al.Radar Signal Recognition Based on Squeeze-and-Excitation Networks[C]//2019 IEEE International Conference on Signal,Information and Data Processing(ICSIDP).2019:1-5.
[54]WEI S,QU Q,WANG M,et al.Automatic Modulation Recognition for Radar Signals via Multi-branch ACSE Networks[J].IEEE Access,2020,8:94923-94935.
[55]WANG X,HUANG G,MA C,et al.Convolutional neural network applied to specific emitter identification based on pulse waveform images[J].IET Radar,Sonar & Navigation,2020,14(5):728-735.
[56]AKYON F C,ALP Y K,GOK G,et al.Classification of Intra-Pulse Modulation of Radar Signals by Feature Fusion Based Convolutional Neural Networks[C]//2018 26th European Signal Processing Conference(EUSIPCO).2018:2290-2294.
[57]WANG Q,DU P,YANG J,et al.Transferred deep learningbased waveform recognition for cognitive passive radar[J].Signal Processing,2019,155(2):259-267.
[58]KHANH N,LONG D V, DONG Q T.A Parallel Neural Network-based Scheme for Radar Emitter Recognition[C]//2020 14th International Conference on Ubiquitous Information Mana-gement and Communication(IMCOM).2020:1-8.
[59]LI Y,SHAO G,WANG B.Automatic Modulation Classification Based on Bispectrum and CNN[C]//2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference(ITAIC).IEEE,2019.
[60]GAO Y Y,ZHANG W B.New Radar Radiation Source Recognition[J].Chinese Journal of Image and Graphics,2020,25(6):1171-1179.
[61]ZHENG Y,CHEN Y J,ZHOU Y S.Faster r-cnn realizes modulation recognition and parameter extraction of overlapping radar signals[J].Telemetry and Remote Control,2019,40(3):32-40.
[62]HOANG L M,KIM M J,KONG S H.Deep Learning Approach to LPI Radar Recognition[C]//2019 IEEE Radar Conference(RadarConf19).IEEE,2019.
[63]ZHU M T, LI Y J, PAN Z S,et al.Automatic modulation recognition of compound signals using a deep multi-label classifier:A case study with radar jamming signals[J/OL].https://www.researchgate.net/publication/337392227_Automatic_Modulation_Recognition_of_Compound_Signals_using_a_Deep_Multi-Label_Classifier_A_Case_Study_with_Radar_Jamming_Signals.
[64]PAN Z,WANG S,ZHU M,et al.Automatic Waveform Recognition of Overlapping LPI Radar Signals Based on Multi-Instance Multi-Label Learning[J].IEEE Signal Processing Letters,2020,27:1275-1279.
[65]MING Z,MING D,LIPENG G,et al.Angel Garrido.Neural Networks for Radar Waveform Recognition[J/OL].https://www.docin.com/p-2278363898.html.
[66]QU Z,WANG W,HOU C,et al.Radar Signal Intra-Pulse Mo-dulation Recognition Based on Convolutional Denoising Autoencoder and Deep Convolutional Neural Network[J].IEEE Access,2019,7:112339-112347.
[67]ZHOU Z,HUANG G,CHEN H,et al.Automatic Radar Waveform Recognition Based on Deep Convolutional Denoising Auto-encoders[J].Circuits Systems & Signal Processing,2018,37:4034-4048.
[68]CUI B Y,TIAN R L,WANG D F,et al.Radar radiation source recognition based on attention mechanism and improved CLDNN[J].System Engineering and Electronic Technology,2021,43(5):1224-1231.
[69]HUANG Y K,JIN W D,YU Z B,et al.Radiation source signalrecognition based on deep learning and integrated learning[J].Systems Engineering and Electronic Technology,2018,40(11):33-38.
[70]SILVER D,HUANG A,MADDISON C J,et al.Mastering the game of Go with deep neural networks and tree search[J].Nature,2016,529(7587):484-489.
[71]GAO Y,CHEN S F,LU X.Review of Reinforcement Learning Research[J].Acta Automatica Sinica,2004(1):86-100.
[72]LENG P F,XU C Y.A deep reinforcement learning method for individual identification of radar emitters[J].Acta Armamentarii,2018,39(12):134-140.
[73]QU Z,HOU C,HOU C,et al.Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional Neural Network and Deep Q-Learning Network[J].IEEE Access,2020,8:49125-49136.
[74]LI M,ZHU W G.Radar Radiation Source Recognition withMissing Database Samples[J].Telecommunications Techno-logy,2017,57(7):784-788.
[75]RAN X,ZHU W.Radar emitter identification based on discriminant joint distribution adaptation[C]//2019 IEEE 3rd Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC).IEEE,2019.
[76]XIAO Y,LIU W,GAO L.Radar Signal Recognition Based on Transfer Learning and Feature Fusion[J].Mobile Networks and Applications,2020,25:1563-1571.
[77]REN K,YE H,GU G,et al.Pulses Classification Based onSparse Auto-Encoders Neural Networks[J].IEEE Access,2019,7:92651-92660.
[78]ZHU W,LI M,ZENG C.Research on Online Learning of Radar Emitter Recognition Based on Hull Vector[C]//IEEE Second International Conference on Data Science in Cyberspace.IEEE,2017.
[79]FENG Y,CHENG Y,WANG G,et al.Radar Emitter Identifica-tion under Transfer Learning and Online Learning[J/OL].https://www.researchgate.net/publication/338167669_Radar_Emitter_Identification_under_Transfer_Learning_and_Online_Learning.
[80]LI T,SU S Y,CHEN Z P,et al.A real-time recognition method of radar intra-pulse modulation in EW receiver[J].Modern Electronic Technology,2013,36(21):9-14.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[3] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[4] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[5] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[6] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[7] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[8] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[9] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[10] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[11] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[12] 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋.
改进Faster R-CNN的光学遥感飞机目标检测
Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN
计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121
[13] 王建明, 陈响育, 杨自忠, 史晨阳, 张宇航, 钱正坤.
不同数据增强方法对模型识别精度的影响
Influence of Different Data Augmentation Methods on Model Recognition Accuracy
计算机科学, 2022, 49(6A): 418-423. https://doi.org/10.11896/jsjkx.210700210
[14] 毛典辉, 黄晖煜, 赵爽.
符合监管合规性的自动合成新闻检测方法研究
Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance
计算机科学, 2022, 49(6A): 523-530. https://doi.org/10.11896/jsjkx.210300083
[15] 王君锋, 刘凡, 杨赛, 吕坦悦, 陈峙宇, 许峰.
基于多源迁移学习的大坝裂缝检测
Dam Crack Detection Based on Multi-source Transfer Learning
计算机科学, 2022, 49(6A): 319-324. https://doi.org/10.11896/jsjkx.210500124
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!