Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/800204.806284acmconferencesArticle/Chapter ViewAbstractPublication Pagessymsac86Conference Proceedingsconference-collections
Article
Free access

Computers and computations in algebraic number theory

Published: 23 March 1971 Publication History

Abstract

In the present survey an outline is given of certain recent as well as earlier developments in the use of electronic high-speed computers in algebraic number theory.

References

[1]
J.D. Alanen and D.E. Knuth, A table of minimum functions for generating Galois of GF(pn). Sankhy&amarc; Ser. A 23 (1961), 128. MR 28 @@@@ 4756.
[2]
J.D. Alanen and D.E. Knuth, Tables of finite fields. Sankhy&amarc; Ser. A 26 (1964), 305-328. MR 32 @@@@ 4122.
[3]
H. Bauer, Numerische Bestimmung von Klassenzahlen reeller zyklischer Zahlkörper. J. Number Theory 1 (1969), 161-162. MR 39 @@@@ 1426
[4]
E.R. Berlekamp, Factoring polynomials over finite fields. Bell System Tech. J. 46 (1967), 1853-1859. MR 36 @@@@ 2314.
[5]
E.R. Berlekamp, On the factorization of polynomials over very large finite fields. Bell Telephone Lab., Inc., Murray Hill, New Jersey, 1968.
[6]
E.R. Berlekamp, How to find the factorization of polynomials over very large finite fields. Bell Telephone Lab., Inc., Murray Hill, New Jersey, 1968.
[7]
K.K. Billevič, On units of algebraic fields of third and fourth degree. Mat. Sb., N.S., 40 (82) (1956), 123-136. MR 19, 533.
[8]
K.K. Billevič, Letter to the editors. Mat. Sb., N.S., 48 (90) (1959), 256.
[9]
K.K Billevič, On the equivalence of two ideals in a algebraic field of order n. Mat. Sb., N.S., 58 (100) (1962), 17-28. MR 25 @@@@ 5049.
[10]
K.K. Billevič, A theorem on unit elements of algebraic fields of order n. Mat. Sb., N. S., 64. (106) (1964), 145-152. MR 29 @@@@ 1201.
[11]
B.J. Birch and H.P.F. Swinnerton-Dyer, Notes on elliptic curves I, II. J. Reine Angew. Math. 212 (1963), 7-25. MR 26 @@@@ 3669; 218 (1965), 79-108. MR 31 @@@@ 3419.
[12]
D.G. Cantor, An algorithm for finding the intersection of two Z-modules. Manuscript, Univ. of Calif., &Lmarc;os Angeles, 1970.
[13]
J.W.S. Cassels, The rational solutions of the Diophantine equation y2 &equil; x3 − D. Acta Math. 82 (1950), 243-273. MR 12, 11; 84 (1951), 299. MR 12, 481.
[14]
J.A. Chang and H.J. Godwin, A table of irreducible polynomials and their exponents. Proc. Cambridge Philos. Soc. 65 (1969), 513-522. MR 38 @@@@ 3249.
[15]
E.J. Cockayne, Computation of Galois group elements of a polynomial equation. Math. Comp. 23 (1969), 425-428. MR 39 @@@@3733.
[16]
H. Cohn, Some experiments in ideal factorization on the MIDAC. J. Assoc. Comp. Mach. 2 (1955), 111-116. MR 16, 866.
[17]
H. Cohn, and S. Gorn, A computation of cyclic cubic units. J. Res. Nat. Bur. Standards 59 (1957), 155-168. MR 19, 732.
[18]
H. Cohn, A numerical study of Dedekind's cubic class number formula. J.Res. Nat. Bur. Standards 59 (1957), 265-271. MR 19, 944.
[19]
H. Cohn, A numerical study of units in composite real quadratic and octic fields. Atlas Sympos. No.2, Oxford, England, 1969.
[20]
J.H. Conway, Tabulation of some information concerning finite fields. "Computers in Math. Research", North-Holland, Amsterdam, 1968, 37-50. MR 38 @@@@ 5749.
[21]
E.C. Dade, O. Taussky and H. Zassenhaus, On the semigroup of ideal classes in an order of an algebraic number field. Bull. Amer. Math. Soc. 67 (1961), 305-308. MR 25 @@@@ 65.
[22]
E.C. Dade, O. Taussky and H. Zassenhaus, On the theory of orders, in particular on the semigroup of ideal classes and genera of an order in an algebraic number field. Math Ann. 148 (1962), 31-64. MR 25 @@@@ 3962.
[23]
E.C. Dade and H. Zassenhaus, How programming difficulties can lead to theoretical advances. Proc. Sympos. Appl. Math. XV, Amer. Math. Soc., Providence, R.I., 1963, 87-94. MR 28 @@@@ 2662.
[24]
H. Davenport, Bases for finite fields. J. London Math. Soc. 43 (1968), 21-39. MR 37 @@@@ 2729.
[25]
L. Elsner und H. Hasse, Numerische Ergebnisse zum Jacobischen Kettenbruchalgorithmus in rein-kubischen Zahlkörpern. Math. Nachr. 34 (1967), 95-97. MR 36 @@@@ 2589.
[26]
E. Frank, Computer use in continued fraction expansions. Math. Comp. 23 (1969), 429-455. MR 39 @@@@ 6815.
[27]
A. Fröhlich and J.C. Shepherdson, On the factorization of polynomials in a finite number of steps. Math. Z. 62 (1955), 331-334. MR 17, 119.
[28]
A. Fröhlich and J.C. Shepherdson, Effective procedures in field theory. Philos. Trans. Roy. Soc. London, Ser. A 248 (1956), 407-432. MR 17, 570.
[29]
H.J. Godwin and P.A. Samet, A table of real cubic fields. J. London Math. Soc. 34 (1959), 108-110. MR 20 @@@@ 7009.
[30]
H.J. Godwin, The determination of units in totally real cubic fields. Proc. Cambridge Philos. Soc. 56 (1960), 318-321. MR 22 @@@@ 7998.
[31]
H.J. Godwin, The determination of the class-numbers of totally real cubic fields. Proc. Cambridge Philos. Soc. 57 (1961), 728-730. MR 23 @@@@ 3733.
[32]
H. Hasse, Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern. Abh. Deutsch. Akad. Wiss. Berlin, Math.-Nat. Kl. (1948)2(1950), 95 pp. MR 11, 503.
[33]
H. Hasse, Uber den Klassenkörper zum quadratischen Zahlkörper mit der Diskriminante -47. Acta Arith. 9 (1964), 419-434. MR 30 @@@@ 3082; 16 (1969), 89-97. MR 40 @@@@ 4237.
[34]
O. Hemer, Notes on the Diophantine equation y2 − k &equil; x3. Ark. Mat. 3 (1954), 67-77. MR 15, 776.
[35]
A. Hollkott, Finite Konstruktion geordneter algebraischer Erweiterungen von geordneten Grundkörpern. Dissertation, Hamburg, Germany, 1941.
[36]
E.L. Ince, Cycles of reduced ideals in quadratic fields. Brit. Assoc. Advancement Sci., Math. Tables IV (1934). Zbl 10, 292.
[37]
K. Iwasawa and C.C. Sims, Computation of invariants in the theory of cyclotomic fields. J. Math. Soc. Japan 18 (1966), 86-96. MR 34 @@@@ 2560.
[38]
H. Kempfert, On sign determination in real algebraic number fields. Number. Math. 11 (1968), 170-174. MR 37 @@@@ 1355.
[39]
H. Kempfert, On the factorization of polynomials. J. Number Theory 1 (1969), 116-120. MR 38 @@@@ 6764.
[40]
S. Kuroda, Über die Zerlegung rationaler Primzahlen in gewissen nicht-abelschen Galoisschen Körpern. J. Math. Soc. Japan 3 (1951), 148-156. MR 13, 442.
[41]
H.W. Leopoldt, Über Einheitengruppe und Klassenzahl reeller abelscher Zahlkörper. Abh. Deutsch. Akad. Wiss. Berlin, Math-Nat. Kl. (1953)2(1954), 48 pp. MR 16,799.
[42]
H.W. Leopoldt, Über ein Fundamental problem der Theorie der Einheiten algebraischer Zahlkörper. Bayer. Akad. Wiss., Math.-Nat. KI., S.-B., 1956, 41-48 (1957). MR 19, 395.
[43]
H.W. Leopoldt, Klassenzahlen und Klassengruppen imaginär-quadratischer Zahlkörper mit Primzahldiskriminante q &Xgr; −1 mod 4. Manuscript, Univ. (TH) Karlsruhe, Germany.
[44]
W. Ljunggren, On the Diophantine equation y2 − k &equil; x3. Acta Arith. 8 (1962/63) 451-463. MR 28 @@@@ 2082.
[45]
D.B. Lloyd, The use of finite polynomial rings in the factorization of the general polynomial. J. Res. Nat. Bur. Standards, Sect. B 69 (1965), 189-212. MR 32 @@@@ 5643.
[46]
H. Matzat, Zahlentheoretische Programme und einige Ergebnisse. Manuscript, Univ. (TH) Karlsruhe, Germany, 1969.
[47]
R.J. Mc Eliece, Factorization of polynomials over finite fields. Math. Comp. 23 (1969), 861-868.
[48]
J.v. Neumann and B. Tuckerman, Continued fraction expansion of 21/3. Math. Tables Aids Comp. 9 (1955), 23-24. MR 16, 961.
[49]
M. Newman, Bounds for class numbers. Proc. Symp. Math. VIII, 1965, Amer. Math. Soc., 70-77, Providence, R.I. MR 31 @@@@ 4778.
[50]
M. Newman, Tables of the class number h(-p) for p prime, p &Xgr; 3 (mod 4), 101,987@@@@ p@@@@ 166,807. UMT 50, Math. Comp. 23 (1969), 683.
[51]
E.T. Ordman, Tables of class numbers for negative prime discriminants. UMT 29, Math. Comp. 23 (1969), 458.
[52]
V.D. Podsypanin, On the indeterminate equation x3 &equil; y2+Az6. Mat. Sb., N.S., 24 (66) (1949), 391-403. MR 11, 81.
[53]
K.P. Popoviĉ, Integral polynomials irreducible mod p. Rev. Math. Pure Appl. 4 (1959), 369-379. MR 22 @@@@4704.
[54]
E. Rowlinson and H. Schwerdtfeger, Polynomials with certain prescribed conditions on the Galois group. Canadian J. Math. 21 (1969), 262-273. MR 38 @@@@ 5753.
[55]
K. Schaffstein, Tafel der Klassenzahlen der reellen quadratischen Zahlkörper mit Primzahldiskriminante unter 12,000 und zwischen 100,000-101,000 und 1,000,000-1,001,000. Math. Ann. 98 (1928), 745-748.
[56]
E.S. Selmer, Tables for the purely cubic field K(3@@@@m). Avh. Norske Vid. Akad. Oslo I 1955, No. 5 (1956), 38pp. MR 18, 286.
[57]
E.S. Selmer, On Cassels' conditions for rational solubility of the Diophantine equation @@@@2 &equil; @@@@3 − D. Arch. Math. Naturvid. 53 (1956), 115-137. MR 18, 285.
[58]
E.S. Selmer, The rational solutions of the Diophantine equation @@@@2 &equil; @@@@3 − D for ¦D¦@@@@100. Math. Scand. 4 (1956), 281-286. MR 19, 120.
[59]
D.L. Smith, The calculation of simple continued-fraction expansions of real algebraic numbers. Master Thesis, Ohio State Univ., Columbus, 1969.
[60]
J. Sonn and H. Zassenhaus, On the theorem on the primitive element. Amer. Math. Monthly 74 (1967), 407-410. MR 35 @@@@ 4201
[61]
H.M. Stark, On the "gap" in a theorem of Heegner. J. Number Theory 1 (1969), 16-27. MR 39 @@@@ 2724.
[62]
H.M. Stark, An explanation of some exotic continued fractions found by J. Brillhart Atlas Sympos. No. 2, Oxford, England, 1969.
[63]
N.M. Stephens, The Diophantine equation X3 + y3 &equil; DZ3 and the conjectures of Birch and Swinnerton-Dyer. J. Reine Angew. Math. 231 (1968), 121-162. MR 37 @@@@ 5225.
[64]
N.M. Stephens, Completion of tables for y2 &equil; x3 + k (−100@@@@k<0) by a method of Ljunggren. Atlas Sympos. No. 2, Oxford, England, 1969.
[65]
J.D. Swift, Construction of Galois fields of characteristic 2 and irreducible polynomials. Math. Comp. 14 (1960), 99-103. MR 22 @@@@ 2602.
[66]
H.P.F. Swinnerton-Dyer, An application of computing to class field theory. "Algebraic Number Theory". Proc. Instructional Conf., Brighton, 1965, 280-291, -Thompson, Washington D.C., 1967. MR 36 @@@@ 2595.
[67]
H.P.F. Swinnerton-Dyer, The conjectures of Birch and Swinnerton-Dyer, and of Tate. Proc. Conf. Local Fields, Driebergen, 1966, 132-157. Springer, 1967. MR 37 @@@@ 6287.
[68]
J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Sem. Bourbaki 306 (1966), 1-26.
[69]
O. Taussky, Some computational problems in algebraic number theory. "Survey of numerical analysis", ed. J. Todd, 549-557. Mc Graw-Hill, New York, 1962. MR 24 @@@@ A 3149.
[70]
O. Taussky, A remark concerning Hilbert's Theorem 94. J. Reine Angew. Math. 239/240 (1969), 435-438.
[71]
O. Taussky, Hilbert's Theorem 94. Atlas Sympos. No. 2, Oxford, England, 1969.
[72]
W. Trinks, Ein Beispiel eines Zahlkörpers mit der Galoisgruppe PSL(3, IF2) über Q. Diploma Thesis, Univ. (TH) Karlsruhe, Germany, 1968.
[73]
J.V. Uspensky, A method for finding units in cubic orders of a negative discriminant. Trans. Amer. Math. Soc.33 (1931), 1-22. Zbl 1, 121.
[74]
H. Zassenhaus, The sum intersection method. Manuscript, Ohio State Univ., Columbus, 1966.
[75]
H. Zassenhaus, and H. Kempfert, The modified algorithm for the maximal order over a commutative order. Manuscript, Ohio State Univ., Columbus.
[76]
H. Zassenhaus, Ein Algorithmus zur Berechnung einer Minimalbasis über gegebener Ordnung. ISNM 7 (1967), 90-103. MR 37 @@@@ 2720.
[77]
H. Zassenhaus, The group of an equation. Nachr. Akad. Wiss. Göttingen II, Math.- Phys. KI., 1967, Nr. 11, 147-166. MR 37 @@@@ 5191.
[78]
H. Zassenhaus, Über die Fundamentalkonstruktionen der endlichen Körpertheorie. Jahresber. Deutsch. Math. Ver. 70 (1968), 177-181. MR 39 @@@@ 175.
[79]
H. Zassenhaus, Continued fraction development of irrational real algebraic numbers. Manuscript, Ohio State Univ., Columbus, 1968.
[80]
H. Zassenhaus, and J. Liang, On a problem of Hasse. Math. Comp. 23 (1969), 515-519. MR 40 @@@@ 122.
[81]
H. Zassenhaus, On Hensel factorization, I. J. Number Theory 1 (1969), 291-311. MR 39 @@@@ 4120.
[82]
H. Zassenhaus, A real root calculus. "Computational problems in abstract algebra" ed. J. Leech. 383-392. Pergamon, Oxford and New York, 1969.
[83]
H.G. Zimmer, Factorization of polynomials according to a method of Zassenhaus. Manuscript, Univ. of California, Los Angeles, 1969.
[84]
D.G. Cantor, P.H. Galyean, and H.G. Zimmer, A continued fraction algorithm for real algebraic numbers. To appear.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SYMSAC '71: Proceedings of the second ACM symposium on Symbolic and algebraic manipulation
March 1971
464 pages
ISBN:9781450377867
DOI:10.1145/800204
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 March 1971

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)76
  • Downloads (Last 6 weeks)13
Reflects downloads up to 04 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media