Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3613904.3642353acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Advancing Patient-Centered Shared Decision-Making with AI Systems for Older Adult Cancer Patients

Published: 11 May 2024 Publication History

Abstract

Shared decision making (SDM) plays a vital role in clinical practice guidelines, fostering enduring therapeutic communication and patient-clinician relationships. Previous research indicates that active patient participation in decision-making improves satisfaction and treatment outcomes. However, medical decision-making can be intricate and multifaceted. To help make SDM more accessible, we designed a patient-centered Artificial Intelligence (AI) SDM system for older adult cancer patients who lack high health literacy to become more involved in the clinical decision-making process and to improve comprehension toward treatment outcomes. We conducted a pilot feasibility study through 12 preliminary interviews followed by 25 usability testing interviews after the system development, with older adult cancer survivors and clinicians. Results indicated promise in the AI system’s ability to enhance SDM, providing personalized healthcare experiences and education for cancer patients. Clinician responses also provided useful suggestions for SDM’s new design and research opportunities in mitigating medical errors and improving clinical efficiency.

Supplemental Material

MP4 File - Video Preview
Video Preview
Transcript for: Video Preview
MP4 File - Video Presentation
Video Presentation
Transcript for: Video Presentation

References

[1]
[n. d.]. International Patient Decision Aids Standards (IPDAS) Collaboration. http://ipdas.ohri.ca/
[2]
[n. d.]. Surgery for Prostate Cancer. https://www.cancer.org/cancer/types/prostate-cancer/treating/surgery.html
[3]
João Abrantes, Maria João Silva, José Meneses, Catarina Oliveira, Francisco Maria Calisto, and Ross Filice. 2023. External validation of a deep learning model for breast density classification. https://doi.org/10.26044/ecr2023/C-16014
[4]
Naseem Ahmadpour, Phillip Gough, Melanie Lovell, Philip Austin, Philip Poronnik, Wendy Qi Zhang, Judy Kay, Bob Kummerfeld, Tim Luckett, Martin Brown, Jane L. Phillips, and Meera Agar. 2023. How can HCI support end-of-life care? Critical perspectives on sociotechnical imaginaries for palliative care. In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems(CHI EA ’23). Association for Computing Machinery, New York, NY, USA, 1–7. https://doi.org/10.1145/3544549.3585768
[5]
Anshu Ankolekar, Ben G. L. Vanneste, Esther Bloemen-van Gurp, Joep G. van Roermund, Evert J. van Limbergen, Kees van de Beek, Tom Marcelissen, Victor Zambon, Matthias Oelke, Andre Dekker, Cheryl Roumen, Philippe Lambin, Adriana Berlanga, and Rianne Fijten. 2019. Development and validation of a patient decision aid for prostate Cancer therapy: from paternalistic towards participative shared decision making. BMC Medical Informatics and Decision Making 19, 1 (July 2019), 130. https://doi.org/10.1186/s12911-019-0862-4
[6]
Robert Aronowitz and Jeremy A. Greene. 2019. Contingent Knowledge and Looping Effects - A 66-Year-Old Man with PSA-Detected Prostate Cancer and Regrets. The New England Journal of Medicine 381, 12 (Sept. 2019), 1093–1096. https://doi.org/10.1056/NEJMp1811521
[7]
Onur Asan and Enid Montague. 2014. Using video-based observation research methods in primary care health encounters to evaluate complex interactions. Informatics in primary care 21, 4 (2014), 161–170. https://doi.org/10.14236/jhi.v21i4.72
[8]
Seljelid B, Varsi C, Solberg Nes L, Øystese Ka, and Børøsund E. 2022. Feasibility of a Digital Patient-Provider Communication Intervention to Support Shared Decision-Making in Chronic Health Care, InvolveMe: Pilot Study. JMIR formative research 6, 4 (April 2022). https://doi.org/10.2196/34738 Publisher: JMIR Form Res.
[9]
Atallah Baydoun, Angela Y Jia, Nicholas G Zaorsky, Rojano Kashani, Santosh Rao, Jonathan E Shoag, Randy A Vince, Leonardo Kayat Bittencourt, Raed Zuhour, Alex T Price, Theodore H Arsenault, and Daniel E Spratt. 2023. Artificial intelligence applications in prostate cancer. Prostate cancer and prostatic diseases (June 2023). https://doi.org/10.1038/s41391-023-00684-0
[10]
Christiane Bieber, Knut Georg Müller, Klaus Blumenstiel, Achim Hochlehnert, Stefanie Wilke, Mechthild Hartmann, and Wolfgang Eich. 2008. A shared decision-making communication training program for physicians treating fibromyalgia patients: Effects of a randomized controlled trial. Journal of Psychosomatic Research 64, 1 (Jan. 2008), 13–20. https://doi.org/10.1016/j.jpsychores.2007.05.009
[11]
Clarence Braddock, Pamela L. Hudak, Jacob J. Feldman, Sylvia Bereknyei, Richard M. Frankel, and Wendy Levinson. 2008. "Surgery is certainly one good option": quality and time-efficiency of informed decision-making in surgery. The Journal of Bone and Joint Surgery. American Volume 90, 9 (Sept. 2008), 1830–1838. https://doi.org/10.2106/JBJS.G.00840
[12]
C. H. Braddock, S. D. Fihn, W. Levinson, A. R. Jonsen, and R. A. Pearlman. 1997. How doctors and patients discuss routine clinical decisions. Informed decision making in the outpatient setting. Journal of General Internal Medicine 12, 6 (June 1997), 339–345. https://doi.org/10.1046/j.1525-1497.1997.00057.x
[13]
Matthias Braun, Patrik Hummel, Susanne Beck, and Peter Dabrock. 2021. Primer on an ethics of AI-based decision support systems in the clinic. Journal of Medical Ethics 47, 12 (Dec. 2021), e3–e3. https://doi.org/10.1136/medethics-2019-105860 Publisher: Institute of Medical Ethics Section: Original research.
[14]
Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qualitative Research in Psychology 3, 2 (2006), 77–101. https://doi.org/10.1191/1478088706qp063oa Place: United Kingdom Publisher: Hodder Arnold.
[15]
D. S. Brody. 1980. The patient’s role in clinical decision-making. Annals of Internal Medicine 93, 5 (Nov. 1980), 718–722. https://doi.org/10.7326/0003-4819-93-5-718
[16]
Wouter Bulten, Kimmo Kartasalo, Po-Hsuan Cameron Chen, Peter Ström, Hans Pinckaers, Kunal Nagpal, Yuannan Cai, David F. Steiner, Hester van Boven, Robert Vink, Christina Hulsbergen-van de Kaa, Jeroen van der Laak, Mahul B. Amin, Andrew J. Evans, Theodorus van der Kwast, Robert Allan, Peter A. Humphrey, Henrik Grönberg, Hemamali Samaratunga, Brett Delahunt, Toyonori Tsuzuki, Tomi Häkkinen, Lars Egevad, Maggie Demkin, Sohier Dane, Fraser Tan, Masi Valkonen, Greg S. Corrado, Lily Peng, Craig H. Mermel, Pekka Ruusuvuori, Geert Litjens, Martin Eklund, and PANDA challenge consortium. 2022. Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nature Medicine 28, 1 (Jan. 2022), 154–163. https://doi.org/10.1038/s41591-021-01620-2
[17]
Eleanor R. Burgess, Ivana Jankovic, Melissa Austin, Nancy Cai, Adela Kapuścińska, Suzanne Currie, J. Marc Overhage, Erika S Poole, and Jofish Kaye. 2023. Healthcare AI Treatment Decision Support: Design Principles to Enhance Clinician Adoption and Trust. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems(CHI ’23). Association for Computing Machinery, New York, NY, USA, 1–19. https://doi.org/10.1145/3544548.3581251
[18]
Carrie J. Cai, Samantha Winter, David Steiner, Lauren Wilcox, and Michael Terry. 2019. "Hello AI": Uncovering the Onboarding Needs of Medical Practitioners for Human-AI Collaborative Decision-Making. Proceedings of the ACM on Human-Computer Interaction 3, CSCW (Nov. 2019), 104:1–104:24. https://doi.org/10.1145/3359206
[19]
Francisco Maria Calisto, João Fernandes, Margarida Morais, Carlos Santiago, João Maria Abrantes, Nuno Nunes, and Jacinto C. Nascimento. 2023. Assertiveness-based Agent Communication for a Personalized Medicine on Medical Imaging Diagnosis. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems(CHI ’23). Association for Computing Machinery, New York, NY, USA, 1–20. https://doi.org/10.1145/3544548.3580682
[20]
Francisco Maria Calisto, Nuno Nunes, and Jacinto C. Nascimento. 2020. BreastScreening: On the Use of Multi-Modality in Medical Imaging Diagnosis. In Proceedings of the International Conference on Advanced Visual Interfaces(AVI ’20). Association for Computing Machinery, New York, NY, USA, 1–5. https://doi.org/10.1145/3399715.3399744
[21]
Francisco Maria Calisto, Nuno Nunes, and Jacinto C. Nascimento. 2022. Modeling adoption of intelligent agents in medical imaging. International Journal of Human-Computer Studies 168 (Dec. 2022), 102922. https://doi.org/10.1016/j.ijhcs.2022.102922
[22]
Kristin L. Carman, Pam Dardess, Maureen Maurer, Shoshanna Sofaer, Karen Adams, Christine Bechtel, and Jennifer Sweeney. 2013. Patient And Family Engagement: A Framework For Understanding The Elements And Developing Interventions And Policies. Health Affairs 32, 2 (Feb. 2013), 223–231. https://doi.org/10.1377/hlthaff.2012.1133 Publisher: Health Affairs.
[23]
Cathy Charles, Tim Whelan, Amiram Gafni, Leonard Reyno, and Cristina Redko. 1998. Doing Nothing is No Choice: Lay Constructions of Treatment Decision-making Among Women with Early-stage Breast Cancer. Sociology of Health & Illness 20, 1 (1998), 71–95. https://doi.org/10.1111/1467-9566.00081 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9566.00081.
[24]
Jung-Chen Chen, Shang-Feng Tsai, and Shih-An Liu. 2023. A retrospective study of differences in patients’ anxiety and satisfaction between paper-based and computer-based tools for “Shared Decision-Making”. Scientific Reports 13, 1 (March 2023), 5187. https://doi.org/10.1038/s41598-023-32448-0 Number: 1 Publisher: Nature Publishing Group.
[25]
Simon Cook, Cosmin Munteanu, Efthymios Papadopoulos, Howard Abrams, Jennifer N. Stinson, Eric Pitters, Douglas Stephens, Margaret Lumchick, Urban Emmenegger, Rama Koneru, Janet Papadakos, Armin Shahrokni, Sara Durbano, Ines Menjak, Rajin Mehta, Kristen Haase, Raymond Jang, Monika K. Krzyzanowska, Craig Dale, Jennifer Jones, Manon Lemonde, Shabbir Alibhai, and Martine Puts. 2023. The development of an electronic geriatric assessment tool: Comprehensive health assessment for my plan (CHAMP). Journal of Geriatric Oncology 14, 1 (Jan. 2023), 101384. https://doi.org/10.1016/j.jgo.2022.09.013
[26]
Juliet Corbin and Anselm Strauss. 2008. Basics of qualitative research: Techniques and procedures for developing grounded theory, 3rd ed. Sage Publications, Inc, Thousand Oaks, CA, US. https://doi.org/10.4135/9781452230153 Pages: xv, 379.
[27]
Juliet Corbin and Anselm Strauss. 2014. Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory. SAGE Publications. Google-Books-ID: hZ6kBQAAQBAJ.
[28]
Burhan Coskun, Gokhan Ocakoglu, Melih Yetemen, and Onur Kaygisiz. 2023. Can ChatGPT, an Artificial Intelligence Language Model, Provide Accurate and High-quality Patient Information on Prostate Cancer?Urology (July 2023). https://doi.org/10.1016/j.urology.2023.05.040
[29]
Maarten Cuypers, Hoda H. M. Al-Itejawi, Cornelia F. van Uden-Kraan, Peep F. M. Stalmeier, Romy E. D. Lamers, Inge M. van Oort, Diederik M. Somford, Reindert Jeroen A. van Moorselaar, Irma M. Verdonck-de Leeuw, Lonneke V. van de Poll-Franse, Julia J. van Tol-Geerdink, and Marieke de Vries. 2020. Introducing Decision Aids into Routine Prostate Cancer Care in The Netherlands: Implementation and Patient Evaluations from the Multi-regional JIPPA Initiative. Journal of Cancer Education 35, 6 (Dec. 2020), 1141–1148. https://doi.org/10.1007/s13187-019-01572-9
[30]
Anita Das, Arild Faxvaag, and Dag Svanæs. 2011. Interaction design for cancer patients: do we need to take into account the effects of illness and medication?. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’11). Association for Computing Machinery, New York, NY, USA, 21–24. https://doi.org/10.1145/1978942.1978946
[31]
Carol E. DeSantis, Kimberly D. Miller, William Dale, Supriya G. Mohile, Harvey J. Cohen, Corinne R. Leach, Ann Goding Sauer, Ahmedin Jemal, and Rebecca L. Siegel. 2019. Cancer statistics for adults aged 85 years and older, 2019. CA: A Cancer Journal for Clinicians 69, 6 (2019), 452–467. https://doi.org/10.3322/caac.21577 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.3322/caac.21577.
[32]
Clark DuMontier, Kah Poh Loh, Enrique Soto-Perez-de Celis, and William Dale. 2021. Decision Making in Older Adults With Cancer. Journal of Clinical Oncology 39, 19 (July 2021), 2164–2174. https://doi.org/10.1200/JCO.21.00165
[33]
Safa ElKefi and Onur Asan. 2021. How technology impacts communication between cancer patients and their health care providers: A systematic literature review. International Journal of Medical Informatics 149 (May 2021), 104430. https://doi.org/10.1016/j.ijmedinf.2021.104430
[34]
Glyn Elwyn, Marie Anne Durand, Julia Song, Johanna Aarts, Paul J. Barr, Zackary Berger, Nan Cochran, Dominick Frosch, Dariusz Galasiński, Pål Gulbrandsen, Paul K. J. Han, Martin Härter, Paul Kinnersley, Amy Lloyd, Manish Mishra, Lilisbeth Perestelo-Perez, Isabelle Scholl, Kounosuke Tomori, Lyndal Trevena, Holly O. Witteman, and Trudy Van der Weijden. 2017. A three-talk model for shared decision making: multistage consultation process. BMJ (Clinical research ed.) 359 (Nov. 2017), j4891. https://doi.org/10.1136/bmj.j4891
[35]
Glyn Elwyn, Steve Laitner, Angela Coulter, Emma Walker, Paul Watson, and Richard Thomson. 2010. Implementing shared decision making in the NHS. BMJ (Clinical research ed.) 341 (Oct. 2010), c5146. https://doi.org/10.1136/bmj.c5146
[36]
Csaba Fasi. 2022. Application of Artificial Intelligence in Administrative Decision-making. In Proceedings of the Central and Eastern European eDem and eGov Days(CEEeGov ’22). Association for Computing Machinery, New York, NY, USA, 147–152. https://doi.org/10.1145/3551504.3551555
[37]
Sahar Fazeli, Judith Sabetti, and Manuela Ferrari. 2023. Performing Qualitative Content Analysis of Video Data in Social Sciences and Medicine: The Visual-Verbal Video Analysis Method. International Journal of Qualitative Methods 22 (Jan. 2023), 16094069231185452. https://doi.org/10.1177/16094069231185452 Publisher: SAGE Publications Inc.
[38]
Harold P. Freeman. 2006. Patient Navigation: A Community Based Strategy to Reduce Cancer Disparities. Journal of Urban Health 83, 2 (March 2006), 139–141. https://doi.org/10.1007/s11524-006-9030-0
[39]
Kenneth Yamikani Fukizi. 2023. Collaborative Decision-Making Assistant for Healthcare Professionals: A Human-Centered AI Prototype Powered by Azure Open AI. In Proceedings of the 6th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies(COMPASS ’23). Association for Computing Machinery, New York, NY, USA, 118–119. https://doi.org/10.1145/3588001.3609370
[40]
Vanessa Georges, François Courtemanche, Sylvain Senecal, Thierry Baccino, Marc Fredette, and Pierre-Majorique Leger. 2016. UX Heatmaps: Mapping User Experience on Visual Interfaces. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems(CHI ’16). Association for Computing Machinery, New York, NY, USA, 4850–4860. https://doi.org/10.1145/2858036.2858271
[41]
Fania R. Gärtner, Hanna Bomhof-Roordink, Ian P. Smith, Isabelle Scholl, Anne M. Stiggelbout, and Arwen H. Pieterse. 2018. The quality of instruments to assess the process of shared decision making: A systematic review. PLoS ONE 13, 2 (Feb. 2018), e0191747. https://doi.org/10.1371/journal.pone.0191747
[42]
Pola Hahlweg, Martin Härter, Yvonne Nestoriuc, and Isabelle Scholl. 2017. How are decisions made in cancer care? A qualitative study using participant observation of current practice. BMJ Open 7, 9 (Sept. 2017), e016360. https://doi.org/10.1136/bmjopen-2017-016360 Publisher: British Medical Journal Publishing Group Section: Patient-centred medicine.
[43]
Yuexing Hao, Zeyu Liu, Monika Safford, Rulla Tamimi, and Saleh Kalantari. 2023. An Exploratory Study of Shared Decision-Making (SDM) for Older Adult Patients with Chronic Diseases. In Companion Publication of the 2023 Conference on Computer Supported Cooperative Work and Social Computing(CSCW ’23 Companion). Association for Computing Machinery, New York, NY, USA, 12–16. https://doi.org/10.1145/3584931.3607023
[44]
Ian Hargraves, Annie LeBlanc, Nilay D. Shah, and Victor M. Montori. 2016. Shared Decision Making: The Need For Patient-Clinician Conversation, Not Just Information. Health Affairs 35, 4 (April 2016), 627–629. https://doi.org/10.1377/hlthaff.2015.1354 Publisher: Health Affairs.
[45]
Sarah T. Hawley and Reshma Jagsi. 2015. Shared Decision Making in Cancer Care: Does One Size Fit All?JAMA Oncology 1, 1 (April 2015), 58–59. https://doi.org/10.1001/jamaoncol.2014.186
[46]
Judith H. Hibbard, Jean Stockard, Eldon R. Mahoney, and Martin Tusler. 2004. Development of the Patient Activation Measure (PAM): conceptualizing and measuring activation in patients and consumers. Health Services Research 39, 4 Pt 1 (Aug. 2004), 1005–1026. https://doi.org/10.1111/j.1475-6773.2004.00269.x
[47]
Rowena Hill, Lucy R. Betts, and Sarah E. Gardner. 2015. Older adults’ experiences and perceptions of digital technology: (Dis)empowerment, wellbeing, and inclusion. Computers in Human Behavior 48 (July 2015), 415–423. https://doi.org/10.1016/j.chb.2015.01.062
[48]
Aubri Hoffman, Laura Crocker, Aakrati Mathur, Deborah Holman, June Weston, Sukhkamal Campbell, Ashley Housten, Andrea Bradford, Shilpi Agrawala, and Terri L. Woodard. 2021. Patients’ and Providers’ Needs and Preferences When Considering Fertility Preservation Before Cancer Treatment: Decision-Making Needs Assessment. JMIR Formative Research 5, 6 (June 2021), e25083. https://doi.org/10.2196/25083 Company: JMIR Formative Research Distributor: JMIR Formative Research Institution: JMIR Formative Research Label: JMIR Formative Research Publisher: JMIR Publications Inc., Toronto, Canada.
[49]
Chloe E. Holden, Sally Wheelwright, Amélie Harle, and Richard Wagland. 2021. The role of health literacy in cancer care: A mixed studies systematic review. PLOS ONE 16, 11 (Nov. 2021), e0259815. https://doi.org/10.1371/journal.pone.0259815 Publisher: Public Library of Science.
[50]
Maia Jacobs, Jeremy Johnson, and Elizabeth D. Mynatt. 2018. MyPath: Investigating Breast Cancer Patients’ Use of Personalized Health Information. Proceedings of the ACM on Human-Computer Interaction 2, CSCW (Nov. 2018), 78:1–78:21. https://doi.org/10.1145/3274347
[51]
Maia L. Jacobs, James Clawson, and Elizabeth D. Mynatt. 2015. Comparing Health Information Sharing Preferences of Cancer Patients, Doctors, and Navigators. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing(CSCW ’15). Association for Computing Machinery, New York, NY, USA, 808–818. https://doi.org/10.1145/2675133.2675252
[52]
Alistair E. W. Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng, Tom J. Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, Li-wei H. Lehman, Leo A. Celi, and Roger G. Mark. 2023. MIMIC-IV, a freely accessible electronic health record dataset. Scientific Data 10, 1 (Jan. 2023), 1. https://doi.org/10.1038/s41597-022-01899-x Number: 1 Publisher: Nature Publishing Group.
[53]
Natalie Joseph-Williams, Robert Newcombe, Mary Politi, Marie-Anne Durand, Stephanie Sivell, Dawn Stacey, Annette O’Connor, Robert J. Volk, Adrian Edwards, Carol Bennett, Michael Pignone, Richard Thomson, and Glyn Elwyn. 2014. Toward Minimum Standards for Certifying Patient Decision Aids: A Modified Delphi Consensus Process. Medical Decision Making 34, 6 (Aug. 2014), 699–710. https://doi.org/10.1177/0272989X13501721 Publisher: SAGE Publications Inc STM.
[54]
Lena Josfeld, Christian Keinki, Carolina Pammer, Bijan Zomorodbakhsch, and Jutta Hübner. 2021. Cancer patients’ perspective on shared decision-making and decision aids in oncology. Journal of Cancer Research and Clinical Oncology 147, 6 (June 2021), 1725–1732. https://doi.org/10.1007/s00432-021-03579-6
[55]
Patrick Kelly, David Ada Adama, Isibor Kennedy Ihianle, Pedro Machado, and Richard I. Otuka. 2023. Exploring the Role of Fear in Human Decision Making. In Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments(PETRA ’23). Association for Computing Machinery, New York, NY, USA, 505–510. https://doi.org/10.1145/3594806.3596590
[56]
Krzysztof Tomasz Konecki. 2011. Visual grounded theory: A methodological outline and examples from empirical work. Revija za sociologiju 41, 2 (2011), 131–160. Publisher: Hrvatsko sociološko društvo.
[57]
Gunther Kress. 2009. Multimodality: A social semiotic approach to contemporary communication. routledge.
[58]
Lotta Kuosmanen, Maija Hupli, Satu Ahtiluoto, and Elina Haavisto. 2021. Patient participation in shared decision-making in palliative care – an integrative review. Journal of Clinical Nursing 30, 23-24 (2021), 3415–3428. https://doi.org/10.1111/jocn.15866 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/jocn.15866.
[59]
Min Hun Lee, Daniel P. Siewiorek, Asim Smailagic, Alexandre Bernardino, and Sergi Bermúdez i Badia. 2021. A Human-AI Collaborative Approach for Clinical Decision Making on Rehabilitation Assessment. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems(CHI ’21). Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3411764.3445472
[60]
Jessy Lin, Nicholas Tomlin, Jacob Andreas, and Jason Eisner. 2023. Decision-Oriented Dialogue for Human-AI Collaboration. https://doi.org/10.48550/arXiv.2305.20076 arXiv:2305.20076 [cs].
[61]
Jieyuan Liu. 2020. Artificial Intelligence and Data Analytics Applications in Healthcare General Review and Case Studies. In Proceedings of the 2020 Conference on Artificial Intelligence and Healthcare(CAIH2020). Association for Computing Machinery, New York, NY, USA, 49–53. https://doi.org/10.1145/3433996.3434006
[62]
France Légaré, Stéphane Ratté, Karine Gravel, and Ian D. Graham. 2008. Barriers and facilitators to implementing shared decision-making in clinical practice: Update of a systematic review of health professionals’ perceptions. Patient Education and Counseling 73, 3 (Dec. 2008), 526–535. https://doi.org/10.1016/j.pec.2008.07.018
[63]
France Légaré and Philippe Thompson-Leduc. 2014. Twelve myths about shared decision making. Patient Education and Counseling 96, 3 (Sept. 2014), 281–286. https://doi.org/10.1016/j.pec.2014.06.014
[64]
Dee Mangin, Cathy Risdon, Larkin Lamarche, Jessica Langevin, Abbas Ali, Jenna Parascandalo, Gaibrie Stephen, and Johanna Trimble. 2019. ’I think this medicine actually killed my wife’: patient and family perspectives on shared decision-making to optimize medications and safety. Therapeutic Advances in Drug Safety 10 (April 2019). https://doi.org/10.1177/2042098619838796 Place: London Publisher: Sage Publications Ltd WOS:000463608900001.
[65]
Ittay Mannheim, Ella Schwartz, Wanyu Xi, Sandra C. Buttigieg, Mary McDonnell-Naughton, Eveline J. M. Wouters, and Yvonne van Zaalen. 2019. Inclusion of Older Adults in the Research and Design of Digital Technology. International Journal of Environmental Research and Public Health 16, 19 (Jan. 2019), 3718. https://doi.org/10.3390/ijerph16193718 Number: 19 Publisher: Multidisciplinary Digital Publishing Institute.
[66]
Meghan K. Mattos, Jessie S. Gibson, Dan Wilson, Laura Jepson, Soojung Ahn, and Ishan C. Williams. [n. d.]. Shared decision-making in persons living with dementia: A scoping review. Dementia-International Journal of Social Research and Practice ([n. d.]). https://doi.org/10.1177/14713012231156976 Place: London Publisher: Sage Publications Ltd WOS:000935985300001.
[67]
Tamara L. McCarron, Karen Moffat, Gloria Wilkinson, Sandra Zelinsky, Jamie M. Boyd, Deborah White, Derek Hassay, Diane L. Lorenzetti, Nancy J. Marlett, and Thomas Noseworthy. 2019. Understanding patient engagement in health system decision-making: a co-designed scoping review. Systematic Reviews 8, 1 (April 2019), 97. https://doi.org/10.1186/s13643-019-0994-8
[68]
Scott Mayer McKinney, Marcin Sieniek, Varun Godbole, Jonathan Godwin, Natasha Antropova, Hutan Ashrafian, Trevor Back, Mary Chesus, Greg S. Corrado, Ara Darzi, Mozziyar Etemadi, Florencia Garcia-Vicente, Fiona J. Gilbert, Mark Halling-Brown, Demis Hassabis, Sunny Jansen, Alan Karthikesalingam, Christopher J. Kelly, Dominic King, Joseph R. Ledsam, David Melnick, Hormuz Mostofi, Lily Peng, Joshua Jay Reicher, Bernardino Romera-Paredes, Richard Sidebottom, Mustafa Suleyman, Daniel Tse, Kenneth C. Young, Jeffrey De Fauw, and Shravya Shetty. 2020. International evaluation of an AI system for breast cancer screening. Nature 577, 7788 (Jan. 2020), 89–94. https://doi.org/10.1038/s41586-019-1799-6 Number: 7788 Publisher: Nature Publishing Group.
[69]
Michael J. Barry, MD, Susan Edgman-Levitan, PA, and Karen Sepucha, PhD. 2018. Shared Decision-Making: Staying Focused on the Ultimate Goal. Catalyst Carryover 4, 5 (Sept. 2018). https://doi.org/10.1056/CAT.18.0097 Publisher: Massachusetts Medical Society.
[70]
Supriya G. Mohile, Mostafa R. Mohamed, Huiwen Xu, Eva Culakova, Kah Poh Loh, Allison Magnuson, Marie A. Flannery, Spencer Obrecht, Nikesha Gilmore, Erika Ramsdale, Richard F. Dunne, Tanya Wildes, Sandy Plumb, Amita Patil, Megan Wells, Lisa Lowenstein, Michelle Janelsins, Karen Mustian, Judith O. Hopkins, Jeffrey Berenberg, Navin Anthony, and William Dale. 2021. Evaluation of geriatric assessment and management on the toxic effects of cancer treatment (GAP70+): a cluster-randomised study. Lancet (London, England) 398, 10314 (Nov. 2021), 1894–1904. https://doi.org/10.1016/S0140-6736(21)01789-X
[71]
Margarida Morais, Francisco Maria Calisto, Carlos Santiago, Clara Aleluia, and Jacinto C. Nascimento. 2023. Classification of Breast Cancer in Mri with Multimodal Fusion. In 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI). 1–4. https://doi.org/10.1109/ISBI53787.2023.10230686 ISSN: 1945-8452.
[72]
Katelyn Morrison, Donghoon Shin, Kenneth Holstein, and Adam Perer. 2023. Evaluating the Impact of Human Explanation Strategies on Human-AI Visual Decision-Making. Proceedings of the ACM on Human-Computer Interaction 7, CSCW1 (April 2023), 48:1–48:37. https://doi.org/10.1145/3579481
[73]
Nora Moumjid, Amiram Gafni, Alain Brémond, and Marie-Odile Carrère. 2007. Shared decision making in the medical encounter: Are we all talking about the same thing?Medical Decision Making 27 (2007), 539–546. https://doi.org/10.1177/0272989X07306779 Place: US Publisher: Sage Publications.
[74]
Devesh Narayanan and Zhi Ming Tan. 2023. Attitudinal Tensions in the Joint Pursuit of Explainable and Trusted AI. Minds and Machines 33, 1 (March 2023), 55–82. https://doi.org/10.1007/s11023-023-09628-y
[75]
Annette M. O’Connor, John E. Wennberg, France Legare, Hilary A. Llewellyn-Thomas, Benjamin W. Moulton, Karen R. Sepucha, Andrea G. Sodano, and Jaime S. King. 2007. Toward the ’tipping point’: decision aids and informed patient choice. Health Affairs (Project Hope) 26, 3 (2007), 716–725. https://doi.org/10.1377/hlthaff.26.3.716
[76]
Cecilia Panigutti, Andrea Beretta, Fosca Giannotti, and Dino Pedreschi. 2022. Understanding the impact of explanations on advice-taking: a user study for AI-based clinical Decision Support Systems. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems(CHI ’22). Association for Computing Machinery, New York, NY, USA, 1–9. https://doi.org/10.1145/3491102.3502104
[77]
Ravi B. Parikh, Christopher Manz, Corey Chivers, Susan Harkness Regli, Jennifer Braun, Michael E. Draugelis, Lynn M. Schuchter, Lawrence N. Shulman, Amol S. Navathe, Mitesh S. Patel, and Nina R. O’Connor. 2019. Machine Learning Approaches to Predict 6-Month Mortality Among Patients With Cancer. JAMA Network Open 2, 10 (Oct. 2019), e1915997. https://doi.org/10.1001/jamanetworkopen.2019.15997
[78]
Sun Young Park, Pei-Yi Kuo, Andrea Barbarin, Elizabeth Kaziunas, Astrid Chow, Karandeep Singh, Lauren Wilcox, and Walter S. Lasecki. 2019. Identifying Challenges and Opportunities in Human-AI Collaboration in Healthcare. In Conference Companion Publication of the 2019 on Computer Supported Cooperative Work and Social Computing(CSCW ’19). Association for Computing Machinery, New York, NY, USA, 506–510. https://doi.org/10.1145/3311957.3359433
[79]
Lia Patrício, Daniela Sangiorgi, Dominik Mahr, Martina Čaić, Saleh Kalantari, and Sue Sundar. 2020. Leveraging service design for healthcare transformation: Toward people-centered, integrated, and technology-enabled healthcare systems. Journal of Service Management 31, 5 (2020), 889–909. Publisher: Emerald Publishing Limited.
[80]
Ruth E. Pel-Littel, Bianca M. Buurman, Marjolein H. van de Pol, Jos W. R. Twisk, Linda R. Tulner, Mirella M. Minkman, Wilma J. M. Scholte Op Reimer, and Julia C. M. van Weert. 2023. Effects of a shared decision making intervention for older adults with multiple chronic conditions: the DICO study. BMC medical informatics and decision making 23, 1 (March 2023), 42. https://doi.org/10.1186/s12911-023-02099-2
[81]
A. H. Pieterse, M. C. M. Baas-Thijssen, C. a. M. Marijnen, and A. M. Stiggelbout. 2008. Clinician and cancer patient views on patient participation in treatment decision-making: a quantitative and qualitative exploration. British Journal of Cancer 99, 6 (Sept. 2008), 875–882. https://doi.org/10.1038/sj.bjc.6604611 Number: 6 Publisher: Nature Publishing Group.
[82]
Arwen H. Pieterse, Anne M. Stiggelbout, and Victor M. Montori. 2019. Shared Decision Making and the Importance of Time. JAMA 322, 1 (July 2019), 25–26. https://doi.org/10.1001/jama.2019.3785
[83]
Martin Pinquart and Paul R. Duberstein. 2004. Information needs and decision-making processes in older cancer patients. Critical Reviews in Oncology/Hematology 51, 1 (July 2004), 69–80. https://doi.org/10.1016/j.critrevonc.2004.04.002
[84]
Martine T. E. Puts, Brianne Tapscott, Margaret Fitch, Doris Howell, Johanne Monette, Doreen Wan-Chow-Wah, Monika Krzyzanowska, Nathasha B. Leighl, Elena Springall, and Shabbir M. Alibhai. 2015. A systematic review of factors influencing older adults’ decision to accept or decline cancer treatment. Cancer Treatment Reviews 41, 2 (2015), 197–215. https://doi.org/10.1016/j.ctrv.2014.12.010
[85]
Sandy Q. Qu and John Dumay. 2011. The qualitative research interview. Qualitative Research in Accounting & Management 8, 3 (Jan. 2011), 238–264. https://doi.org/10.1108/11766091111162070 Publisher: Emerald Group Publishing Limited.
[86]
Shriti Raj, Toshi Gupta, Joyce Lee, Matthew Kay, and Mark W Newman. 2023. “It can bring you in the right direction”: Episode-Driven Data Narratives to Help Patients Navigate Multidimensional Diabetes Data to Make Care Decisions. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems(CHI ’23). Association for Computing Machinery, New York, NY, USA, 1–16. https://doi.org/10.1145/3544548.3581073
[87]
Bob Riter. 2014. When Your Life Is Touched by Cancer: Practical Advice and Insights for Patients, Professionals, and Those Who Care (1st edition ed.). Hunter House.
[88]
Suhila Sawesi, Mohamed Rashrash, Kanitha Phalakornkule, Janet S. Carpenter, and Josette F. Jones. 2016. The Impact of Information Technology on Patient Engagement and Health Behavior Change: A Systematic Review of the Literature. JMIR Medical Informatics 4, 1 (Jan. 2016), e4514. https://doi.org/10.2196/medinform.4514 Company: JMIR Medical Informatics Distributor: JMIR Medical Informatics Institution: JMIR Medical Informatics Label: JMIR Medical Informatics Publisher: JMIR Publications Inc., Toronto, Canada.
[89]
Dena Schulman-Green, Emily Cherlin, Renee Capasso, Sarah S. Mougalian, Shiyi Wang, Cary P. Gross, Preeti S. Bajaj, Katherine Eakle, Sharmi Patel, Karin Douglas, and Kerin Adelson. 2020. Patient and Family Caregiver Considerations When Selecting Early Breast Cancer Treatment: Implications for Clinical Pathway Development. The Patient - Patient-Centered Outcomes Research 13, 6 (Dec. 2020), 683–697. https://doi.org/10.1007/s40271-020-00426-7
[90]
Mina S. Sedrak, Rachel A. Freedman, Harvey J. Cohen, Hyman B. Muss, Aminah Jatoi, Heidi D. Klepin, Tanya M. Wildes, Jennifer G. Le-Rademacher, Gretchen G. Kimmick, William P. Tew, Kevin George, Simran Padam, Jennifer Liu, Andrew R. Wong, Andrea Lynch, Benjamin Djulbegovic, Supriya G. Mohile, and William Dale. 2021. Older adult participation in cancer clinical trials: A systematic review of barriers and interventions. CA: A Cancer Journal for Clinicians 71, 1 (Jan. 2021), 78–92. https://onlinelibrary.wiley.com/doi/abs/10.3322/caac.21638 Publisher: American Cancer Society.
[91]
L. Aubree Shay and Jennifer Elston Lafata. 2014. Understanding patient perceptions of shared decision making. Patient Education and Counseling 96, 3 (Sept. 2014), 295–301. https://doi.org/10.1016/j.pec.2014.07.017
[92]
Sarah J. Shoemaker, Michael S. Wolf, and Cindy Brach. 2014. Development of the Patient Education Materials Assessment Tool (PEMAT): A new measure of understandability and actionability for print and audiovisual patient information. Patient Education and Counseling 96, 3 (Sept. 2014), 395–403. https://doi.org/10.1016/j.pec.2014.05.027
[93]
Venkatesh Sivaraman, Leigh A Bukowski, Joel Levin, Jeremy M. Kahn, and Adam Perer. 2023. Ignore, Trust, or Negotiate: Understanding Clinician Acceptance of AI-Based Treatment Recommendations in Health Care. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems(CHI ’23). Association for Computing Machinery, New York, NY, USA, 1–18. https://doi.org/10.1145/3544548.3581075
[94]
Helen Smith. 2021. Clinical AI: opacity, accountability, responsibility and liability. AI & SOCIETY 36, 2 (June 2021), 535–545. https://doi.org/10.1007/s00146-020-01019-6
[95]
A. M. Stiggelbout, A. H. Pieterse, and J. C. J. M. De Haes. 2015. Shared decision making: Concepts, evidence, and practice. Patient Education and Counseling 98, 10 (Oct. 2015), 1172–1179. https://doi.org/10.1016/j.pec.2015.06.022
[96]
Sally Thorne, John L. Oliffe, and Kelli I. Stajduhar. 2013. Communicating shared decision-making: Cancer patient perspectives. Patient Education and Counseling 90, 3 (March 2013), 291–296. https://doi.org/10.1016/j.pec.2012.02.018
[97]
Lyndal J. Trevena, Carissa Bonner, Yasmina Okan, Ellen Peters, Wolfgang Gaissmaier, Paul K. J. Han, Elissa Ozanne, Danielle Timmermans, and Brian J. Zikmund-Fisher. 2021. Current Challenges When Using Numbers in Patient Decision Aids: Advanced Concepts. Medical Decision Making: An International Journal of the Society for Medical Decision Making 41, 7 (Oct. 2021), 834–847. https://doi.org/10.1177/0272989X21996342
[98]
Octavian Sabin Tătaru, Mihai Dorin Vartolomei, Jens J. Rassweiler, Oșan Virgil, Giuseppe Lucarelli, Francesco Porpiglia, Daniele Amparore, Matteo Manfredi, Giuseppe Carrieri, Ugo Falagario, Daniela Terracciano, Ottavio de Cobelli, Gian Maria Busetto, Francesco Del Giudice, and Matteo Ferro. 2021. Artificial Intelligence and Machine Learning in Prostate Cancer Patient Management—Current Trends and Future Perspectives. Diagnostics 11, 2 (Feb. 2021), 354. https://doi.org/10.3390/diagnostics11020354
[99]
Julia C. M. van Weert, Barbara C. van Munster, Remco Sanders, René Spijker, Lotty Hooft, and Jesse Jansen. 2016. Decision aids to help older people make health decisions: a systematic review and meta-analysis. BMC Medical Informatics and Decision Making 16, 1 (April 2016), 45. https://doi.org/10.1186/s12911-016-0281-8
[100]
Himanshu Verma, Jakub Mlynar, Roger Schaer, Julien Reichenbach, Mario Jreige, John Prior, Florian Evéquoz, and Adrien Depeursinge. 2023. Rethinking the Role of AI with Physicians in Oncology: Revealing Perspectives from Clinical and Research Workflows. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems(CHI ’23). Association for Computing Machinery, New York, NY, USA, 1–19. https://doi.org/10.1145/3544548.3581506
[101]
Elizabeth Ward, Ahmedin Jemal, Vilma Cokkinides, Gopal K. Singh, Cheryll Cardinez, Asma Ghafoor, and Michael Thun. 2004. Cancer Disparities by Race/Ethnicity and Socioeconomic Status. CA: A Cancer Journal for Clinicians 54, 2 (2004), 78–93. https://doi.org/10.3322/canjclin.54.2.78 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.3322/canjclin.54.2.78.
[102]
Thomas H. Wieringa, Rene Rodriguez-Gutierrez, Gabriela Spencer-Bonilla, Maartje de Wit, Oscar J. Ponce, Manuel F. Sanchez-Herrera, Nataly R. Espinoza, Yaara Zisman-Ilani, Marleen Kunneman, Linda J. Schoonmade, Victor M. Montori, and Frank J. Snoek. 2019. Decision aids that facilitate elements of shared decision making in chronic illnesses: a systematic review. Systematic Reviews 8, 1 (May 2019), 121. https://doi.org/10.1186/s13643-019-1034-4
[103]
World Health Organization. 2016. Patient engagement. World Health Organization. https://apps.who.int/iris/handle/10665/252269
[104]
Qian Yang, Yuexing Hao, Kexin Quan, Stephen Yang, Yiran Zhao, Volodymyr Kuleshov, and Fei Wang. 2023. Harnessing Biomedical Literature to Calibrate Clinicians’ Trust in AI Decision Support Systems. https://doi.org/10.1145/3544548.3581393
[105]
Qian Yang, Aaron Steinfeld, and John Zimmerman. 2019. Unremarkable AI: Fitting Intelligent Decision Support into Critical, Clinical Decision-Making Processes. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3290605.3300468
[106]
Bo Zhang, Huiping Shi, and Hongtao Wang. 2023. Machine Learning and AI in Cancer Prognosis, Prediction, and Treatment Selection: A Critical Approach. Journal of Multidisciplinary Healthcare 16 (June 2023), 1779–1791. https://doi.org/10.2147/JMDH.S410301
[107]
Shaodian Zhang, Erin O’Carroll Bantum, Jason Owen, Suzanne Bakken, and Noémie Elhadad. 2017. Online cancer communities as informatics intervention for social support: conceptualization, characterization, and impact. Journal of the American Medical Informatics Association 24, 2 (March 2017), 451–459. https://doi.org/10.1093/jamia/ocw093

Cited By

View all
  • (2024)Effectiveness of Artificial Intelligence Technologies in Cancer Treatment for Older Adults: A Systematic ReviewJournal of Clinical Medicine10.3390/jcm1317497913:17(4979)Online publication date: 23-Aug-2024
  • (2024)Outcome First or Overview First? Optimizing Patient-Oriented Framework for Evidence-Based Healthcare Treatment Selections with XAI ToolsCompanion Publication of the 2024 Conference on Computer-Supported Cooperative Work and Social Computing10.1145/3678884.3681859(248-254)Online publication date: 11-Nov-2024
  • (2024)The i-SDM Framework: Developing AI-based Tools in Shared Decision-Making for Cancer Treatment with Clinical ProfessionalsCompanion Publication of the 2024 Conference on Computer-Supported Cooperative Work and Social Computing10.1145/3678884.3681841(134-140)Online publication date: 11-Nov-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
CHI '24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems
May 2024
18961 pages
ISBN:9798400703300
DOI:10.1145/3613904
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 May 2024

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Cancer Care
  2. Clinical Decision Making
  3. Older Adults
  4. Risk Communication
  5. Shared Decision Making

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

CHI '24

Acceptance Rates

Overall Acceptance Rate 6,199 of 26,314 submissions, 24%

Upcoming Conference

CHI '25
CHI Conference on Human Factors in Computing Systems
April 26 - May 1, 2025
Yokohama , Japan

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1,444
  • Downloads (Last 6 weeks)212
Reflects downloads up to 20 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Effectiveness of Artificial Intelligence Technologies in Cancer Treatment for Older Adults: A Systematic ReviewJournal of Clinical Medicine10.3390/jcm1317497913:17(4979)Online publication date: 23-Aug-2024
  • (2024)Outcome First or Overview First? Optimizing Patient-Oriented Framework for Evidence-Based Healthcare Treatment Selections with XAI ToolsCompanion Publication of the 2024 Conference on Computer-Supported Cooperative Work and Social Computing10.1145/3678884.3681859(248-254)Online publication date: 11-Nov-2024
  • (2024)The i-SDM Framework: Developing AI-based Tools in Shared Decision-Making for Cancer Treatment with Clinical ProfessionalsCompanion Publication of the 2024 Conference on Computer-Supported Cooperative Work and Social Computing10.1145/3678884.3681841(134-140)Online publication date: 11-Nov-2024
  • (2024)Know Your Users: Towards Explainable AI in BangladeshCompanion of the 2024 on ACM International Joint Conference on Pervasive and Ubiquitous Computing10.1145/3675094.3679002(890-893)Online publication date: 5-Oct-2024

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media