Nothing Special   »   [go: up one dir, main page]

skip to main content
article

An Optimal Algorithm for Partial Order Multiway Search

Published: 08 June 2023 Publication History

Abstract

Partial order multiway search (POMS) is an important problem that finds use in crowdsourcing, distributed file systems, software testing, etc. In this problem, a game is played between an algorithm A and an oracle, based on a directed acyclic graph G known to both parties. First, the oracle picks a vertex t in G called the target; then, A aims to figure out which vertex is t by probing reachability. In each probe, A selects a set Q of vertices in G whose size is bounded by a pre-agreed value k, and the oracle then reveals, for each vertex q 2 Q, whether q can reach the target in G. The objective of A is to minimize the number of probes. This article presents an algorithm to solve POMS in O(log1+k n + d k log1+d n) probes, where n is the number of vertices in G, and d is the largest out-degree of the vertices in G. The probing complexity is asymptotically optimal.

References

[1]
M. Adler and B. Heeringa. Approximating optimal binary decision trees. Algorithmica, 62(3--4):1112--1121, 2012.
[2]
E. M. Arkin, H. Meijer, J. S. B. Mitchell, D. Rappaport, and S. Skiena. Decision trees for geometric models. International Journal of Computational Geometry and Applications, 8(3):343--364, 1998.
[3]
Y. Ben-Asher and E. Farchi. The cost of searching in general trees versus complete binary trees. Technical report, 1997.
[4]
Y. Ben-Asher, E. Farchi, and I. Newman. Optimal search in trees. SIAM J. of Comp., 28(6):2090--2102, 1999.
[5]
R. Carmo, J. Donadelli, Y. Kohayakawa, and E. S. Laber. Searching in random partially ordered sets. Theo. Comp. Sci., 321(1):41--57, 2004.
[6]
V. T. Chakaravarthy, V. Pandit, S. Roy, P. Awasthi, and M. K. Mohania. Decision trees for entity identification: Approximation algorithms and hardness results. ACM Transactions on Algorithms, 7(2):15:1--15:22, 2011.
[7]
V. T. Chakaravarthy, V. Pandit, S. Roy, and Y. Sabharwal. Approximating decision trees with multiway branches. In ICALP, pages 210--221, 2009.
[8]
F. Cicalese, T. Jacobs, E. S. Laber, and M. Molinaro. On greedy algorithms for decision trees. In ISAAC, pages 206--217, 2010.
[9]
F. Cicalese, T. Jacobs, E. S. Laber, and M. Molinaro. On the complexity of searching in trees and partially ordered structures. Theoretical Computer Science, 412(50):6879--6896, 2011.
[10]
F. Cicalese, T. Jacobs, E. S. Laber, and M. Molinaro. Improved approximation algorithms for the average-case tree searching problem. Algorithmica, 68(4):1045--1074, 2014.
[11]
F. Cicalese, T. Jacobs, E. S. Laber, and C. D. Valentim. The binary identification problem for weighted trees. Theoretical Computer Science, 459:100--112, 2012.
[12]
F. Cicalese, B. Keszegh, B. Lidick´y, D. P´alv¨olgyi, and
[13]
P. de la Torre, R. Greenlaw, and A. A. Sch¨affer. Optimal edge ranking of trees in polynomial time. Algorithmica, 13(6):592--618, 1995.
[14]
D. Dereniowski. Edge ranking of weighted trees. Discrete Applied Mathematics, 154(8):1198--1209, 2006.
[15]
D. Dereniowski. Edge ranking and searching in partial orders. Discrete Applied Mathematics, 156(13):2493--2500, 2008.
[16]
D. Dereniowski and M. Kubale. Efficient parallel query processing by graph ranking. Fundamenta Informaticae, 69(3):273--285, 2006.
[17]
D. Dereniowski, S. Tiegel, P. Uznanski, and D. Wolleb-Graf. A framework for searching in graphs in the presence of errors. In Proceedings of Symposium on Simplicity in Algorithms (SOSA), pages 4:1--4:17.
[18]
E. Emamjomeh-Zadeh, D. Kempe, and V. Singhal. Deterministic and probabilistic binary search in graphs. In STOC, pages 519--532, 2016.
[19]
A. V. Iyer, H. D. Ratliff, and G. Vijayan. On an edge ranking problem of trees and graphs. Discrete Applied Mathematics, 30(1):43--52, 1991.
[20]
T. Jacobs, F. Cicalese, E. S. Laber, and M. Molinaro. On the complexity of searching in trees: Average-case minimization. In ICALP, pages 527--539, 2010.
[21]
C. Jordan. Sur les assemblages de lignes. Journal f¨ur die reine und angewandte Mathematik, 70:185--190, 1869.
[22]
S. R. Kosaraju, T. M. Przytycka, and R. S. Borgstrom. On an optimal split tree problem. In WADS, pages 157--168, 1999.
[23]
E. S. Laber and M. Molinaro. An approximation algorithm for binary searching in trees. Algorithmica, 59(4):601--620, 2011.
[24]
E. S. Laber and L. T. Nogueira. Fast searching in trees. Electronic Notes in Discrete Mathematics, 7:90--93, 2001.
[25]
T. W. Lam and F. L. Yue. Optimal edge ranking of trees in linear time. Algorithmica, 30(1):12--33, 2001.
[26]
S. Lu, W. Martens, M. Niewerth, and Y. Tao. Optimal algorithms for multiway search on partial orders. In PODS, pages 175--187, 2022.
[27]
S. Mozes, K. Onak, and O. Weimann. Finding an optimal tree searching strategy in linear time. In SODA, pages 1096--1105, 2008.
[28]
K. Onak and P. Parys. Generalization of binary search: Searching in trees and forest-like partial orders. In FOCS, pages 379--388, 2006.
[29]
Y. Tao, Y. Li, and G. Li. Interactive graph search. In SIGMOD, pages 1393--1410, 2019.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM SIGMOD Record
ACM SIGMOD Record  Volume 52, Issue 1
March 2023
118 pages
ISSN:0163-5808
DOI:10.1145/3604437
Issue’s Table of Contents
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 June 2023
Published in SIGMOD Volume 52, Issue 1

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 72
    Total Downloads
  • Downloads (Last 12 months)44
  • Downloads (Last 6 weeks)5
Reflects downloads up to 01 Nov 2024

Other Metrics

Citations

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media