Nothing Special   »   [go: up one dir, main page]

Skip to main content

On an Optimal Split Tree Problem

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1663))

Included in the following conference series:

  • 978 Accesses

Abstract

We introduce and study a problem that we refer to as the optimal split tree problem. The problem generalizes a number of problems including two classical tree construction problems including the Huffman tree problem and the optimal alphabetic tree. We show that the general split tree problem is NP-complete and analyze a greedy algorithm for its solution. We show that a simple modification of the greedy algorithm guarantees O(log n) approximation ratio. We construct an example for which this algorithm achieves Ω \( \Omega \left( {\frac{{\log n}} {{\log \log n}}} \right) \) approximation ratio. We show that if all weights are equal and the optimal split tree is of depth O(log n), then the greedy algorithm guarantees O \( \Omega \left( {\frac{{\log n}} {{\log \log n}}} \right) \) approximation ratio. We also extend our approximation algorithm to the construction of a search tree for partially ordered sets.

Research supported by NSF grant CCR9508545 and ARO grant DAAH04-96-1-0013.

Research supported by the Sloan and Department of Energy Postdoctoral Fellowship for Computational Biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Abrahams, Private Communication. DIMACS 1998.

    Google Scholar 

  2. J. Abrahams, DIMACS Workshop on Codes and Trees. October 1998.

    Google Scholar 

  3. T. M. Cover, J.A. Thomas, Elements of Information Theory. John Wiley & Sons. Inc., New York. 1991.

    Book  MATH  Google Scholar 

  4. A. Itai, Optimal alphabetic trees. SIAM Journal of Computing 5 (1976) pp.9–18.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. M. Garsia and M. L. Wachs, A New algorithm for minimal binary search trees. SIAM Journal of Computing 6 (1977) pp. 622–642.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. R. Garey, Optimal binary search trees with restricted maximal depth. SIAM Journal of Computing 3 (1974) pp.101–110.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. H. Kingston, A new proof of the Garsia-Wachs algorithm. Journal of Algorithms 9 (1998) 129–138.

    Article  MathSciNet  Google Scholar 

  8. T. C. Hu and A. C. Tucker, Optimal computer search trees and variable length alphabetic codes. SIAM Journal of Applied Mathematics 21 (1971) pp. 514–532.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. A. Huffman, A Method for the construction of minimum redundancy codes. Proceedings of the Institute of Radio Engineers 40 (1952) pp.1098–1101.

    Google Scholar 

  10. L. L. Larmore, Height restricted optimal alphabetic trees. SIAM Journal of Computing 16 (1987) pp. 1115–1123.

    Article  MathSciNet  MATH  Google Scholar 

  11. L.L. Larmore, T. Przytycka, Optimal alphabetic tree problem revisited. Journal of Algorithms 28 pp.1–20 extended abstract published in ICALP’ 94, LNCS 820, Springer-Verlag, pp 251-262

    Google Scholar 

  12. L.L. Larmore, T. Przytycka, A Fast Algorithm for Optimum Height Limited Alphabetic Binary Trees. SIAM Journal on Computing 23 pp.1283–1312.

    Google Scholar 

  13. R.M. Karp, Reducibility among combinatorial problems. in R.E. Miller and J.W. Teatcher. eds. Complexity of Computer Computations Plenum Press. New York, 85–103, 1972.

    Chapter  Google Scholar 

  14. D. E. Knuth, Optimum binary search trees. Acta Informatica 1 pp.14–25.

    Google Scholar 

  15. R. L. Wessner, Optimal alphabetic search trees with restricted maximal height. Information Processing Letters 4 pp.90–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kosaraju, S.R., Przytycka, T.M., Borgstrom, R. (1999). On an Optimal Split Tree Problem. In: Dehne, F., Sack, JR., Gupta, A., Tamassia, R. (eds) Algorithms and Data Structures. WADS 1999. Lecture Notes in Computer Science, vol 1663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48447-7_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-48447-7_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66279-2

  • Online ISBN: 978-3-540-48447-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics