Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Reliable Spanners for Metric Spaces

Published: 09 March 2023 Publication History

Abstract

A spanner is reliable if it can withstand large, catastrophic failures in the network. More precisely, any failure of some nodes can only cause a small damage in the remaining graph in terms of the dilation. In other words, the spanner property is maintained for almost all nodes in the residual graph. Constructions of reliable spanners of near linear size are known in the low-dimensional Euclidean settings. Here, we present new constructions of reliable spanners for planar graphs, trees, and (general) metric spaces.

References

[1]
Ittai Abraham and Cyril Gavoille. 2006. Object location using path separators. In Proceedings of the 25th ACM Symposium on Principles of Distributed Computing, Eric Ruppert and Dahlia Malkhi (Eds.). ACM, New York, NY, 188–197.
[2]
Ittai Abraham, Cyril Gavoille, Anupam Gupta, Ofer Neiman, and Kunal Talwar. 2019. Cops, robbers, and threatening skeletons: Padded decomposition for minor-free graphs. SIAM J. Comput. 48, 3 (2019), 1120–1145.
[3]
Ittai Abraham, Cyril Gavoille, Dahlia Malkhi, and Udi Wieder. 2010. Strong-diameter decompositions of minor free graphs. Theory Comput. Syst. 47, 4 (2010), 837–855.
[4]
N. Alon and F. R. K. Chung. 1988. Explicit construction of linear sized tolerant networks, In Proceedings of the First Japan Conference on Graph Theory and Applications (Hakone, 1986). Discrete Math. 72, 15–19.
[5]
Baruch Awerbuch and David Peleg. 1990. Sparse partitions. In Proceedings of the 31st IEEE Symposium on Foundations of Computer Science (FOCS’90). IEEE Computer Society, USA, 503–513.
[6]
Y. Bartal. 1998. On approximating arbitrary metrics by tree metrics. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing(STOC’98). ACM, New York, NY, 161–168.
[7]
Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. 2005. On metric Ramsey-type phenomena. Ann. Math. 162, 2 (2005), 643–709.
[8]
Greg Bodwin, Michael Dinitz, Merav Parter, and Virginia Vassilevska Williams. 2018. Optimal Vertex Fault Tolerant Spanners (for Fixed Stretch). SIAM, 3600 University City Science Center, Philadelphia, PA, 1884–1900. Retrieved from arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611975031.123
[9]
P. Bose, P. Carmi, V. Dujmovic, and P. Morin. 2018. Near-optimal O(k)-robust geometric spanners. Retrieved from http://arxiv.org/abs/1812.09913.
[10]
P. Bose, V. Dujmović, P. Morin, and M. Smid. 2013. Robust geometric spanners. SIAM J. Comput. 42, 4 (2013), 1720–1736.
[11]
Kevin Buchin, Sariel Har-Peled, and Dániel Oláh. 2019. A spanner for the day after. In Proceedings of the 35th International Symposium on Computational Geometry (SoCG’19) (LIPIcs), Gill Barequet and Yusu Wang (Eds.), Vol. 129. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 19:1–19:15.
[12]
Kevin Buchin, Sariel Har-Peled, and Dániel Oláh. 2020. Sometimes reliable spanners of almost linear size. In Proceedings of the 29th Annual European Symposium on Algorithms (ESA’20) (LIPIcs), Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders (Eds.), Vol. 173. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 27:1–27:15.
[13]
Costas Busch, Ryan LaFortune, and Srikanta Tirthapura. 2014. Sparse covers for planar graphs and graphs that exclude a fixed minor. Algorithmica 69, 3 (2014), 658–684.
[14]
T.-H. H. Chan, M. Li, L. Ning, and S. Solomon. 2015. New doubling spanners: Better and simpler. SIAM J. Comput. 44, 1 (2015), 37–53.
[15]
Ioana Dumitriu, Tobias Johnson, Soumik Pal, and Elliot Paquette. 2013. Functional limit theorems for random regular graphs. Prob. Theory Related Fields 156, 3–4 (2013), 921–975.
[16]
J. Fakcharoenphol, S. Rao, and K. Talwar. 2004. A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. Sys. Sci. 69, 3 (2004), 485–497.
[17]
Arnold Filtser and Hung Le. 2021. Reliable spanners: Locality-sensitive orderings strike back. Retrieved from https://arxiv.org/abs/2101.07428.
[18]
Joel Friedman. 2003. A proof of Alon’s second eigenvalue conjecture. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing(STOC’03), Lawrence L. Larmore and Michel X. Goemans (Eds.). ACM, New York, NY, 720–724.
[19]
Joel Friedman, Jeff Kahn, and Endre Szemerédi. 1989. On the second eigenvalue in random regular graphs. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, David S. Johnson (Ed.). ACM, New York, NY, 587–598.
[20]
Sariel Har-Peled, Manor Mendel, and Dániel Oláh. 2021. Reliable spanners for metric spaces. In Proceedings of the 37th International Annual Symposium on Computational Geometry(SoCG’21) (LIPIcs), Kevin Buchin and Éric Colin de Verdière (Eds.), Vol. 189. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 43:1–43:13.
[21]
Shlomo Hoory, Nathan Linial, and Avi Wigderson. 2006. Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.) 43, 4 (2006), 439–561.
[22]
R. Krauthgamer, J. R. Lee, M. Mendel, and A. Naor. 2005. Measured descent: A new embedding method for finite metric spaces. Geom. Funct. Anal. 15, 4 (2005), 839–858.
[23]
C. Levcopoulos, G. Narasimhan, and M. Smid. 2002. Improved algorithms for constructing fault-tolerant spanners. Algorithmica 32, 1 (2002), 144–156.
[24]
Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid. 1998. Efficient algorithms for constructing fault-tolerant geometric spanners. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing(STOC’98), Jeffrey Scott Vitter (Ed.). ACM, New York, NY, 186–195.
[25]
R. J. Lipton and R. E. Tarjan. 1979. A separator theorem for planar graphs. SIAM J. Appl. Math. 36, 2 (1979), 177–189. arXiv:https://doi.org/10.1137/0136016
[26]
T. Lukovszki. 1999. New results of fault tolerant geometric spanners. In Proceedings of the 6th International Workshop on Algorithms and Data Structures.Springer-Verlag, Berlin, 193–204.
[27]
M. Mendel and A. Naor. 2007. Ramsey partitions and proximity data structures. J. Euro. Math. Soc. 009, 2 (2007), 253–275. http://eudml.org/doc/277787.
[28]
G. Narasimhan and M. Smid. 2007. Geometric Spanner Networks. Cambridge University Press, New York, NY.
[29]
D. Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. SIAM, 3600 University City Science Center, Philadelphia, PA. Retrieved from
[30]
D. Peleg and A. Schäffer. 1989. Graph spanners. J. Graph Theory 13 (1989), 99–116.
[31]
Doron Puder. 2015. Expansion of random graphs: New proofs, new results. Invent. Math. 201, 3 (2015), 845–908.
[32]
S. Solomon. 2014. From hierarchical partitions to hierarchical covers: Optimal fault-tolerant spanners for doubling metrics. In Proceedings of the 46th ACM Symposium on Theory of Computing (STOC’14). ACM, New York, NY, 363–372.
[33]
N. C. Wormald. 1999. Models of random regular graphs. In Surveys in Combinatorics, 1999 (Canterbury). London Math. Soc. Lecture Note Ser., Vol. 267. Cambridge University Press, Cambridge, UK, 239–298.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Algorithms
ACM Transactions on Algorithms  Volume 19, Issue 1
January 2023
254 pages
ISSN:1549-6325
EISSN:1549-6333
DOI:10.1145/3582898
  • Editor:
  • Edith Cohen
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 March 2023
Online AM: 22 September 2022
Accepted: 06 September 2022
Revised: 31 August 2022
Received: 01 January 2022
Published in TALG Volume 19, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Computational geometry
  2. spanners
  3. reliable

Qualifiers

  • Research-article

Funding Sources

  • NSF AF
  • BSF
  • Netherlands Organisation for Scientific Research (NWO)

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 133
    Total Downloads
  • Downloads (Last 12 months)31
  • Downloads (Last 6 weeks)2
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media