Nothing Special   »   [go: up one dir, main page]

skip to main content
rapid-communication

Spanners under the Hausdorff and Fréchet distances

Published: 18 October 2024 Publication History

Abstract

We initiate the study of spanners under the Hausdorff and Fréchet distances. Let S be a set of points in R d and ε a non-negative real number. A subgraph H of the Euclidean graph over S is an ε-Hausdorff-spanner (resp., an ε-Fréchet-spanner) of S, if for any two points u, v ∈ S there exists a path P ( u, v ) in H between u and v, such that the Hausdorff distance (resp., the Fréchet distance) between P ( u, v ) and u v ‾ is at most ε. We show that any t-spanner of a planar point-set S is a t 2 − 1 2-Hausdorff-spanner and a min ⁡ { t 2, 5 t 2 − 2 t − 3 4 }-Fréchet spanner. We also prove that for any t > 1, there exist a set of points S and an ε 1-Hausdorff-spanner of S and an ε 2-Fréchet-spanner of S, where ε 1 and ε 2 are constants, such that neither of them is a t-spanner.

Highlights

We initiate the study of spanners under the Hausdorff and Fréchet distances.
We show that any t-spanner of a planar point-set S is a f(t)-Hausdorff-spanner and a g(t)-Fréchet spanner.
We prove that for any t > 1, there exist a set of points S and an ε 1-Hausdorff-spanner of S that is not a t-spanner, where ε 1 is a constant.
We prove that for any t > 1, there exist a set of points S and an ε 2-Fréchet-spanner of S that is not a t-spanner, where ε 2 is a constant.

References

[1]
Sujoy Bhore, Csaba D. Tóth, Euclidean Steiner spanners: light and sparse, SIAM J. Discrete Math. 36 (3) (2022) 2411–2444.
[2]
Paul B. Callahan, S. Rao Kosaraju, A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields, J. ACM 42 (1) (1995) 67–90.
[3]
Thomas Eiter, Heikki Mannila, Computing discrete Fréchet distance, Technical Report CD-TR 94/64 Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.
[4]
Maurice Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo 22 (1906) 1–72.
[5]
Felix Hausdorff, Grundzüge der Mengenlehre, Veit & Comp., 1914.
[6]
Helge von Koch, Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire, Ark. Mat. Astron. Fys. 1 (1904) 681–704.
[7]
Giri Narasimhan, Michiel Smid, Geometric Spanner Networks, Cambridge University Press, 2009.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Information Processing Letters
Information Processing Letters  Volume 187, Issue C
Jan 2025
115 pages

Publisher

Elsevier North-Holland, Inc.

United States

Publication History

Published: 18 October 2024

Author Tags

  1. Computational geometry
  2. Geometric spanners
  3. Fréchet distance

Qualifiers

  • Rapid-communication

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media