Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Specification Guided Automated Synthesis of Feedback Controllers

Published: 22 September 2021 Publication History

Abstract

The growing use of complex Cyber-Physical Systems (CPSs) in safety-critical applications has led to the demand for the automatic synthesis of robust feedback controllers that satisfy a given set of formal specifications. Controller synthesis from the high-level specification is an NP-Hard problem. We propose a heuristic-based automated technique that synthesizes feedback controllers guided by Signal Temporal Logic (STL) specifications. Our technique involves rigorous analysis of the traces generated by the closed-loop system, matrix decomposition, and an incremental multi-parameter tuning procedure. In case a controller cannot be found to satisfy all the specifications, we propose a technique for modifying the unsatisfiable specifications so that the controller synthesized for the satisfiable subset of specifications now also satisfies the modified specifications. We demonstrate our technique on eleven controllers used as standard closed-loop control system benchmarks, including complex controllers having multiple independent or nested control loops. Our experimental results establish that the proposed algorithm can automatically solve complex feedback controller synthesis problems within a few minutes.

References

[1]
Y. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan. 2011. S-TaLiRo: A tool for temporal logic falsification for hybrid systems. In TACAS. 254–257.
[2]
E. Asarin, A. Donzé, O. Maler, and D. Nickovic. 2011. Parametric identification of temporal properties. In RV. 147–160.
[3]
K. J. Astrom and R. M. Murray. 2008. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, USA.
[4]
D. P. Atherton. 2000. Autotuning of PID controllers: Relay feedback approach. Int. J. Adapt. Control Signal Process. 14, 5 (2000), 559–562.
[5]
E. Bartocci, T. Ferrère, N. Manjunath, and D. Ničković. 2018. Localizing Faults in simulink/stateflow models with STL. In HSCC. ACM, 197–206.
[6]
V. Blondel and J. N. Tsitsiklis. 1997. NP-Hardness of some linear control design problems. SIAM J. Control Optim. 35, 6 (1997), 2118–2127.
[7]
S. Bogomolov, C. Mitrohin, and A. Podelski. 2010. Composing reachability analyses of hybrid systems for safety and stability. In ATVA. 67–81.
[8]
A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. 2020. Control synthesis from linear temporal logic specifications using model-free reinforcement learning. In ICRA. IEEE, 10349–10355.
[9]
T. F. Chan. 1987. Rank revealing QR factorizations. Linear Algebra Appl. 88–89 (1987), 67–82.
[10]
CTMS. [n.d.]. Aircraft Pitch. http://ctms.engin.umich.edu/CTMS/index.php?example=AircraftPitch&section=SimulinkModeling.
[11]
CTMS. [n.d.]. DC Motor. http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed&section=Sim ulinkModeling.
[12]
CTMS. [n.d.]. Inverted Pendulum. http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&secti on=SimulinkModeling.
[13]
R. Dimitrova, M. Ghasemi, and U. Topcu. 2020. Reactive synthesis with maximum realizability of linear temporal logic specifications. Acta Informatica 57, 1–2 (2020), 107–135.
[14]
A. Donzé. 2010. Breach: A toolbox for verification and parameter synthesis of hybrid systems. In CAV. 167–170.
[15]
A. Donzé, T. Ferrère, and O. Maler. 2013. Efficient robust monitoring for STL. In CAV. 264–279.
[16]
E. A. Lee and S. A. Seshia. 2017. Introduction to Embedded Systems - A Cyber-Physical Systems Approach, Second Edition. MIT Press.
[17]
C. Finucane, G. Jing, and H. Kress-Gazit. 2010. LTLMoP: Experimenting with language, temporal logic and robot control. In IROS. 1988–1993.
[18]
S. Ghosh, D. Sadigh, P. Nuzzo, V. Raman, A. Donzé, A. L. Sangiovanni-Vincentelli, S. S. Sastry, and S. A. Seshia. 2016. Diagnosis and repair for synthesis from signal temporal logic specifications. In HSCC. 31–40.
[19]
G. H. Golub and Charles F. V. Loan. 1996. Matrix Computations (3 ed.). Johns Hopkins.
[20]
Y. P. Hong and C. T. Pan. 1992. Rank-revealing QR factorizations and the singular value decomposition. Math. Comp. 58, 197 (1992), 213–232.
[21]
J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter. 2017. Control of a quadrotor with reinforcement learning. IEEE Robotics and Automation Letters 2, 4 (2017), 2096–2103.
[22]
S. Jha, S. Raj, S. K. Jha, and N. Shankar. 2018. Duality-based nested controller synthesis from STL specifications for stochastic linear systems. In FORMATS. 235–251.
[23]
X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia. 2015. Mining requirements from closed-loop control models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34, 11 (2015), 1704–1717.
[24]
G. Juniwal, A. Donzé, J. C. Jensen, and S. A. Seshia. 2014. CPSGrader: Synthesizing temporal logic testers for auto-grading an embedded systems laboratory. In EMSOFT. 24:1–24:10.
[25]
J. Kapinski, X. Jin, J. Deshmukh, A. Donze, T. Yamaguchi, H. Ito, T. Kaga, S. Kobuna, and S. Seshia. 2016. ST-Lib: A library for specifying and classifying model behaviors. In SAE Technical Paper. SAE International.
[26]
I. M. Khairuddin, A. Majeed, A. Lim, J. A. Jizat, and A. A. Jaafar. 2014. Modelling and PID control of a quadrotor aerial robot. In Manufacturing Engineering(Advanced Materials Research, Vol. 903). 327–331.
[27]
R. Koymans. 1990. Specifying real-time properties with metric temporal logic. Real-Time Systems 2, 4 (1990), 255–299.
[28]
Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control with deep reinforcement learning. In ICLR.
[29]
J. Lygeros, C. Tomlin, and S. Sastry. 1997. Multiobjective hybrid controller synthesis. In Hybrid and Real-Time Systems, O. Maler (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 109–123.
[30]
O. Maler and D. Nickovic. 2013. Monitoring properties of analog and mixed-signal circuits. STTT 15, 3 (2013), 247–268.
[31]
MathWorks. [n.d.]. Cascaded Multiloop Feedback Design. https://www.mathworks.com/help/control/ug/cascaded-multi-loopmulti-compen sator-feedback-design.html.
[32]
MathWorks. [n.d.]. Designing a High Angle of Attack Pitch Mode Control. https://www.mathworks.com/help/simulink/slref/designing-a-high-angle-of-a ttack-pitch-mode-control.html.
[33]
MathWorks. [n.d.]. Fixed-Structure Autopilot for a Passenger Jet. https://www.mathworks.com/help/control/ug/fixed-structure-autopilot-for-a -passenger-jet.html.
[34]
MathWorks. [n.d.]. QR decomposition. https://in.mathworks.com/help/matlab/ref/qr.html.
[35]
MathWorks. [n.d.]. Temperature Control in a Heat Exchanger. https://www.mathworks.com/help/control/ug/temperature-control-in-a-heat-e xchanger.html.
[36]
M. Mazo, A. Davitian, and P. Tabuada. 2010. PESSOA: A tool for embedded controller synthesis. In CAV. 566–569.
[37]
L. Meier, D. Honegger, and M. Pollefeys. 2015. PX4: A node-based multithreaded open source robotics framework for deeply embedded platforms. ICRA, 6235–6240.
[38]
P. M. Meshram and R. G. Kanojiya. 2012. Tuning of PID controller using Ziegler-Nichols method for speed control of DC motor. In ICAESM. 117–122.
[39]
S. Mouelhi, A. Girard, and G. Gössler. 2013. CoSyMA: A tool for controller synthesis using multi-scale abstractions. In HSCC. 83–88.
[40]
D. Nickovic and O. Maler. 2007. AMT: A Property-based monitoring tool for analog systems. In FORMATS. 304–319.
[41]
A. Pnueli. 1977. The temporal logic of programs. In SFCS. 46–57.
[42]
Quanser Real-Time Control (QUARC. [n.d.]. CRS Robot Arm. http://quanser-update.azurewebsites.net/quarc/documentation/quarc_using_d evices_robots.html#catalyst.
[43]
V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia. 2015. Reactive synthesis from signal temporal logic specifications. In HSCC. 239–248.
[44]
V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-Vincentelli, and S. A. Seshia. 2014. Model predictive control with signal temporal logic specifications. In CDC. 81–87.
[45]
P. Roy, P. Tabuada, and R. Majumdar. 2011. Pessoa 2.0: A controller synthesis tool for cyber-physical systems. In HSCC. 315–316.
[46]
W. Selby. [n.d.]. Simulating a 3DRobotics ArduPilot based quadrotor. https://www.wilselby.com/research/arducopter/controller-design/.
[47]
F. Shmarov, N. Paoletti, E. Bartocci, S. Lin, S. A. Smolka, and P. Zuliani. 2017. SMT-based synthesis of safe and robust pid controllers for stochastic hybrid systems. In Hardware and Software: Verification and Testing. 131–146.
[48]
A. Silberschatz, H. Korth, and S. Sudarshan. 2005. Database Systems Concepts (5 ed.). McGraw-Hill, Inc., USA.
[49]
N. K. Singh and I. Saha. 2020. Specification-guided automated debugging of CPS models. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 11 (2020), 4142–4153.
[50]
P. Varshney, G. Nagar, and I. Saha. 2019. DeepControl: Energy-efficient control of a quadrotor using a deep neural network. In IROS. 43–50.
[51]
T. Wongpiromsarn, U. Topcu, N. Ozay, Huan Xu, and R. M. Murray. 2011. TuLiP: A software toolbox for receding horizon temporal logic planning. In HSCC. 313–314.
[52]
M. Zhuang and D. P. Atherton. 1993. Automatic tuning of optimum PID controllers. IEE Proceedings D - Control Theory and Applications 140, 3 (1993), 216–224.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Embedded Computing Systems
ACM Transactions on Embedded Computing Systems  Volume 20, Issue 5s
Special Issue ESWEEK 2021, CASES 2021, CODES+ISSS 2021 and EMSOFT 2021
October 2021
1367 pages
ISSN:1539-9087
EISSN:1558-3465
DOI:10.1145/3481713
  • Editor:
  • Tulika Mitra
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 22 September 2021
Accepted: 01 July 2021
Revised: 01 June 2021
Received: 01 April 2021
Published in TECS Volume 20, Issue 5s

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Feedback control
  2. controller synthesis
  3. multi-parameter tuning
  4. parametric signal temporal logic
  5. falsification

Qualifiers

  • Research-article
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 156
    Total Downloads
  • Downloads (Last 12 months)26
  • Downloads (Last 6 weeks)5
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media