Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3362789.3362857acmotherconferencesArticle/Chapter ViewAbstractPublication PagesteemConference Proceedingsconference-collections
research-article

Three-dimensional anatomical models of the visual pathway and eyeballs using radiological images

Published: 16 October 2019 Publication History

Abstract

In recent years there has been an accelerated technological development in all areas of life, including teaching and learning, especially in health sciences and Human Anatomy. This study offers an interactive system which creates three dimensional anatomic models of the eyeball and visual pathway for educational and clinical purposes. The tool is based on the post processing of radiological images from magnetic resonance in any spatial section by different computer software. The result is a dynamic tool which allows zooming, translation and rotation of any 3D anatomical model, improving spatial perception and anatomical comprehension.

References

[1]
LB Cantor, ChJ Rapuano, GA Cioffi. 2016. Orbit, Eyelids and Lacrimal System. American Academy of Ophthalmology. San Francisco, CA.
[2]
MJ Wilkinson (2018). Anatomy of the human orbit. Operative Techniques in Otolaryngology, 29, 186--192.
[3]
W Pryor, Th Zacharias (2018). Imaging of the human orbit. Operative Techniques in Otolaryngology, 29, 19--202.
[4]
DJ McKeefry, A Gouws, MP Burton, et al. (2009). The noninvasive dissection of the human visual cortex: using FMRI and TMSto study the organization of the visual brain. Neuroscientis, 15, 489--506.
[5]
M Aradi, R Steier, P Bukovics, et al. (2011). Quantitative proton MRI and MRS of the rat brain with a 3T clinical MR scanner. Journal Neuroradiology, 38, 90--7.
[6]
Z Chen, J Wang, F Lin, et al. Correlation between lateral geniculate nucleus atrophy and damage to the optic disc in glaucoma. Journal Neuroradiology http://dx.doi.org/10.1016/j.neurad.2012.10.004.
[7]
L Merlini, MI Vargas, M Anooshiravani, et al. (2011). Look for the nerves! MR neurography adds essential diagnostic value to routine MRI in pediatric practice: a pictorial overview. Journal Neuroradiology, 38, 141--7.
[8]
JA Juanes, P Ruisoto, A. Prats-Galino et al. (2014). Computed anatomical modelling of the optic pathway and oculomotor system using magnetic resonance imaging. Journal of Neuroradiology, 14, 168--176.
[9]
W Wei, R Goldmand, N Simaan. (2010) Robot-assisted ophthalmic surgery. Canadian Journal of Ophtahlmology, 45, 581--4.
[10]
JA Juanes (2016). Current status of new technologies in the teaching of experimental sciences and medicine in particular. Educación Médica, 17(1), 1--2.
[11]
FL Caparó, N Paredes (2015). Use of Technology in Medical Training. Horizonte Médico, 15(2), 4--5.
[12]
CM Tanasi, CI Tanase, T Harsovescu (2014). Modern methods used in the study of human anatomy. Procedia - Social and Behavioral Sciences, 127, 676--680.
[13]
PA Guze (2015). Using technology to meet the challenges of medical education. Transactions of the American clinical and climatological association, 126, 260--270.
[14]
SS Jamali, MF Shiratuddin, KW Woing et al. (2015). Utilising Mobile-Augmented Reality for Learning Human Anatomy. Procedia - Social and Behavioral Sciences, 197, 659--668.
[15]
JW Vieira de Faria, MJ Teixeira, LM Sousa et al. (2016). Virtual and stereoscopic anatomy: when virtual reality meets medical education. Journal Neurosurgery, 125, 1105--1111.
[16]
P Ruisoto, JA Juanes, I Contador, et al. (2012) Experimental evidence for improved neuroimaging interpretation using three-dimensional graphic models. Anatomical Sciences Education, 5, 132--7.
[17]
JC Ferré, E Niederberger, X Morandi, et al. (2013). Anatomical variations of the anterior cerebral arterial circle visualized by multidetector computed tomography angiography: comparison with 3D rotational angiography. Journal Neuroradiology, 40, 112--20.
[18]
RE Matta, C von Wilmowsky, W Neuhuber et al. (2016). The impact of different cone beam computed tomography and multi-slice computed tomography scan parameters on virtual three-dimensional model accuracy using a highly precise ex vivo evaluation method. Journal of Cranio-Maxillo-Facial Surgery, 44, 632--636.
[19]
W Wu, L Rigolo, LJ O'donnell, I Norton et al. (2012). Visual pathway study using in vivo diffusion tensor imaging tractography to complement classic anatomy. Neurosurgery, 70, 145--56.
[20]
R. Douglas (2007). Robotic surgery in ophthalmology: reality or fantasy? Journal Ophthalmology, 91, 1--7.
[21]
M Ulutas, S Boyacr, A Akakin et al. (2016). Surgical anatomy of the cavernous sinus, superior orbital fissure, and orbital apex via lateral orbitotomy approach: a cadaveric anatomical study. Acta Neurochirurgica 158, 2135--2148.
[22]
A Fitzhugh, H Naveed, I Davagnanam et al. (2015). Proposed three-dimensional of the orbit and relevance to orbital fracture repair. Surgical Radiologic Anatomy, 38, 557--561.
[23]
I. Valverde (2017). Impresión tridimensional de modelos cardiacos: aplicaciones en el campo de la educación médica, la cirugía cardiaca y el intervencionismo estructural. Revista española de cardiología, 70(4), 282--291.
[24]
A Arcas, G Vendrell, F Cuesta et al. (2018). Advantages of performing mentoplasties with customized guides and plates generated with 3D planning and printing. Results from a series of 23 cases. Journal of Cranio-Maxillo-Facial Surgery, 46, 2088--2095.
[25]
G Plant, J Barbur, P Jindahra, et al. (2010). Demonstration of optic tract atrophy in hemianopsia by magnetic resonance imaging: confirmation of retrograde trans-synaptic degeneration in the human visual pathway. Journal Neurology Neurosurgery and Psychiatry, 81, 44.
[26]
MS Vaphiades. (2011). Magnetic resonance findings in the pregeniculate visual pathways in leber hereditary optic neuropathy. Journal Neuroophthalmol, 31:194.
[27]
D Westen, B Hammar, G Bynke. (2011). Magnetic resonance findings in the pregeniculate visual pathways in leber hereditary optic neuropathy. Journal Neuroophthalmology, 31, 48--51.
[28]
A Ganguli, GJ Pagan-Diaz, L Grant et al. (2018). 3D printing for preoperative planning and surgical training: a review. Biomedical biodevices, 20, 65.
[29]
L Chepelev, N Wake, J Ryan et al. (2018). Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Printing in Medicine, 4, 11.
[30]
F. J. García-Peñalvo. (2015). Engineering contributors to a Knowledge Society multicultural perspective. IEE. Revista Iberoamericana de Tecnologías del Aaprendizaje. (IEE RITA) 10, 1, 17--18.
[31]
F.J. García-Peñalvo. (2014). Formación en la sociedad del conocimiento, un programa de doctorado con una perspectiva interdisciplinar. Education in the Knowledge Society. 15. 1. 4--9.
[32]
J. García-Peñalvo, A. García-Holgafo, and M.S. Ramirez-Monroya. (2018). The PhD CorneR: TEEM 2018 Doctoral Consorium. In TEEM'18 Proceedings of the Sixth International Conference on Technological Ecosystems Of Enhancing Multiculturality (Salamanca, Sapain, October 24th-26th, 2018). F.J. García-Peñalvo Ed. ACM, New York, NY, USA, 979--983.

Index Terms

  1. Three-dimensional anatomical models of the visual pathway and eyeballs using radiological images

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    TEEM'19: Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality
    October 2019
    1085 pages
    ISBN:9781450371919
    DOI:10.1145/3362789
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    In-Cooperation

    • University of Salamanca: University of Salamanca

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 16 October 2019

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. 3D reconstruction
    2. anatomy
    3. education
    4. orbit
    5. radiological images
    6. visual pathway

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    TEEM'19

    Acceptance Rates

    Overall Acceptance Rate 496 of 705 submissions, 70%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 57
      Total Downloads
    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 18 Feb 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media