Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3342280.3342311acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
short-paper

Cheetah: Accelerating Database Queries with Switch Pruning

Published: 19 August 2019 Publication History

Abstract

Modern database systems are growing increasingly distributed and struggle to reduce the query completion time with a large volume of data. In this poster, we propose to leverage programmable switches in the network to offload part of the query computation to the switch. While switches provide high performance, they also have many resource and programming constraints that make it hard to implement diverse database queries. To fit in these constraints, we introduce the concept of data pruning - filtering out entries which are guaranteed not to affect the output. The database system then runs the same query, but on the pruned data, which significantly reduces the processing time. We propose a set of pruning algorithms for a variety of queries. We implement our system, Cheetah, on a Barefoot Tofino switch and Spark. Our evaluation on the Berkeley AMPLab benchmark shows up to 3x improvement in the query completion time compared to Apache Spark.

References

[1]
Barefoot Tofino and Tofino 2 Switches. https://www.barefootnetworks.com/products/brief-tofino-2/.
[2]
IBM/Netezza. The Netezza Data Appliance Architecture: A Platform for High Performance Data Warehousing and Analytics, 2011. www.redbooks.ibm.com/abstracts/redp4725.html.
[3]
Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt, Samuel Madden, Michael Stonebraker. A Comparison of Approaches to Large-Scale Data Analysis. ACM SIGMOD (2009).
[4]
Arasu, A., Blanas, S., Eguro, K., Joglekar, M., Kaushik, R., Kossmann, D., Ramamurthy, R., Upadhyaya, P., and Venkatesan, R. Secure database-as-aservice with cipherbase. In ACM SIGMOD (2013).
[5]
Basat, R. B., Einziger, G., Friedman, R., Luizelli, M. C., and Waisbard, E. Constant time updates in hierarchical heavy hitters. ACM SIGCOMM and CoRR/1707.06778 ( 2017).
[6]
Basat, R. B., Einziger, G., Keslassy, I., Orda, A., Vargaftik, S., and Waisbard, E. Memento: Making sliding windows efficient for heavy hitters. In ACM CoNEXT (2018).
[7]
Basat, R. B., Friedman, R., and Shahout, R. Stream frequency over interval queries. Proceedings of the VLDB Endowment 12, 4 (2018), 433--445.
[8]
Bosshart, P., Gibb, G., Kim, H.-S., Varghese, G., McKeown, N., Izzard, M., Mujica, F., and Horowitz, M. Forwarding metamorphosis: Fast programmable match-action processing in hardware for SDN. In SIGCOMM CCR (2013).
[9]
Dang, H. T., Sciascia, D., Canini, M., Pedone, F., and Soulé, R. Netpaxos: Consensus at network speed. In ACM SOSR (2015).
[10]
Dennl, C., Ziener, D., and Teich, J. On-the-fly composition of fpga-based sql query accelerators using a partially reconfigurable module library. In IEEE FCCM (2012).
[11]
Do, J., Kee, Y.-S., Patel, J. M., Park, C., Park, K., and DeWitt, D. J. Query processing on smart ssds: opportunities and challenges. In ACM SIGMOD (2013).
[12]
Harrison, R., Cai, Q., Gupta, A., and Rexford, J. Network-wide heavy hitter detection with commodity switches. In ACM SOSR (2018).
[13]
Huang, Q., Jin, X., Lee, P. P. C., Li, R., Tang, L., Chen, Y.-C., and Zhang, G. Sketchvisor: Robust network measurement for software packet processing. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication (New York, NY, USA, 2017), SIGCOMM '17, ACM, pp. 113--126.
[14]
Jepsen, T., Moshref, M., Carzaniga, A., Foster, N., and Soulé, R. Life in the fast lane: A line-rate linear road. In ACM SOSR (2018).
[15]
Jepsen, T., Moshref, M., Carzaniga, A., Foster, N., and Soulé, R. Packet subscriptions for programmable asics. In HotNets (2018).
[16]
Jin, X., Li, X., Zhang, H., Foster, N., Lee, J., Soulé, R., Kim, C., and Stoica, I. Netchain: Scale-free sub-rtt coordination. In USENIX NSDI (2018).
[17]
Jin, X., Li, X., Zhang, H., Soulé, R., Lee, J., Foster, N., Kim, C., and Stoica, I. Netcache: Balancing key-value stores with fast in-network caching. In ACM SOSP (2017).
[18]
Lerner, A., Hussein, R., Cudre-Mauroux, P., and eXascale Infolab, U. The case for network-accelerated query processing. In CIDR (2019).
[19]
Liu, Z., Ben-Basat, R., Einziger, G., Kassner, Y., Braverman, V., Friedman, R., and Sekar, V. Nitrosketch: Robust and general sketch-based monitoring in software switches. In ACM SIGCOMM (2019).
[20]
Miao, R., Zeng, H., Kim, C., Lee, J., and Yu, M. Silkroad: Making stateful layer-4 load balancing fast and cheap using switching asics. In ACM SIGCOMM (2017).
[21]
Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, Matei Zaharia. Spark SQL: Relational Data Processing in Spark. ACM SIGMOD (2015).
[22]
Paul, J., He, J., and He, B. Gpl: A gpu-based pipelined query processing engine. In ACM SIGMOD (2016).
[23]
Ran Ben Basat, Xiaoqi Chen, Gil Einzinger, Ori Rottenstreich. Efficient Measurement on Programmable Switches Using Probabilistic Recirculation. In IEEE ICNP (2018).
[24]
Reynold Xin and Matei Zaharia. Lessons from Running Large Scale Spark Workloads. https://www.slideshare.net/databricks/large-scalesparktalk.
[25]
Sukhwani, B., Min, H., Thoennes, M., Dube, P., Iyer, B., Brezzo, B., Dillenberger, D., and Asaad, S. Database analytics acceleration using fpgas. In PACT (2012).
[26]
Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain, N., Sen Sarma, J., Murthy, R., and Liu, H. Data warehousing and analytics infrastructure at facebook. In ACM SIGMOD (2010).
[27]
Woods, L., István, Z., and Alonso, G. Ibex: an intelligent storage engine with support for advanced sql offloading. VLDB (2014).
[28]
Yang, T., Jiang, J., Liu, P., Huang, Q., Gong, J., Zhou, Y., Miao, R., Li, X., and Uhlig, S. Elastic sketch: Adaptive and fast network-wide measurements. In Proc. of ACM SIGCOMM (2018).
[29]
Yu, M., Jose, L., and Miao, R. Software defined traffic measurement with opens-ketch. In Proceedings of the 10th USENIX Conference on Networked Systems Design and Implementation (Berkeley, CA, USA, 2013), nsdi'13, USENIX Association, pp. 29--42.

Cited By

View all
  • (2021)In-network support for transaction triagingProceedings of the VLDB Endowment10.14778/3461535.346155114:9(1626-1639)Online publication date: 1-May-2021
  • (2021)JumpgateProceedings of the 14th ACM International Conference on Systems and Storage10.1145/3456727.3463770(1-12)Online publication date: 14-Jun-2021
  • (2020)Cheetah: Accelerating Database Queries with Switch PruningProceedings of the 2020 ACM SIGMOD International Conference on Management of Data10.1145/3318464.3389698(2407-2422)Online publication date: 11-Jun-2020
  • Show More Cited By

Index Terms

  1. Cheetah: Accelerating Database Queries with Switch Pruning

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGCOMM Posters and Demos '19: Proceedings of the ACM SIGCOMM 2019 Conference Posters and Demos
    August 2019
    183 pages
    ISBN:9781450368865
    DOI:10.1145/3342280
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 19 August 2019

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Algorithms
    2. Databases
    3. P4
    4. Programmable Switches
    5. Pruning

    Qualifiers

    • Short-paper
    • Research
    • Refereed limited

    Conference

    SIGCOMM '19
    Sponsor:
    SIGCOMM '19: ACM SIGCOMM 2019 Conference
    August 19 - 23, 2019
    Beijing, China

    Acceptance Rates

    SIGCOMM Posters and Demos '19 Paper Acceptance Rate 62 of 102 submissions, 61%;
    Overall Acceptance Rate 92 of 158 submissions, 58%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)In-network support for transaction triagingProceedings of the VLDB Endowment10.14778/3461535.346155114:9(1626-1639)Online publication date: 1-May-2021
    • (2021)JumpgateProceedings of the 14th ACM International Conference on Systems and Storage10.1145/3456727.3463770(1-12)Online publication date: 14-Jun-2021
    • (2020)Cheetah: Accelerating Database Queries with Switch PruningProceedings of the 2020 ACM SIGMOD International Conference on Management of Data10.1145/3318464.3389698(2407-2422)Online publication date: 11-Jun-2020
    • (2020)Cooperative Network-wide Flow Selection2020 IEEE 28th International Conference on Network Protocols (ICNP)10.1109/ICNP49622.2020.9259395(1-11)Online publication date: 13-Oct-2020

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media