Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3208976.3209002acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

On the Complexity of Computing Real Radicals of Polynomial Systems

Published: 11 July 2018 Publication History

Abstract

Let f= (f1, ..., fs) be a sequence of polynomials in Q[X1,...,Xn] of maximal degree D and V⊂ Cn be the algebraic set defined by f and r be its dimension. The real radical re < f > associated to f is the largest ideal which defines the real trace of V . When V is smooth, we show that re < f >, has a finite set of generators with degrees bounded by V. Moreover, we present a probabilistic algorithm of complexity (snDn )O(1) to compute the minimal primes of re < f >. When V is not smooth, we give a probabilistic algorithm of complexity sO(1) (nD)O(nr2r) to compute rational parametrizations for all irreducible components of the real algebraic set V ∩ Rn. Experiments are given to show the efficiency of our approaches.

References

[1]
Basu, S., Pollack, R., Roy, M.-F., 2006. Algorithms in Real Algebraic Geometry. Springer Berlin Heidelberg, Berlin, Heidelberg.
[2]
Becker, E., Neuhaus, R., 1993. Computation of real radicals of polynomial ideals. In: Eyssette, F., Galligo, A. (Eds.), Computational Algebraic Geometry. Vol. 109. Birkhauser, Boston, MA, pp. 1--20.
[3]
Blanco, C., Jeronimo, G., Solern&#243;, P., 2004. Computing generators of the ideal of a smooth affine algebraic variety. Journal of Symbolic Computation 38 (1), 843--872.
[4]
Bochnak, J., Coste, M., Roy, M.-F., 1998. Real algebraic geometry. Vol. 36. Springer, Berlin, Heidelberg.
[5]
Brake, D. A., Hauenstein, J. D., Liddell, Jr., A. C., 2016. Validating the completeness of the real solution set of a system of polynomial equations. In: Proceedings of the 2016 International Symposium on Symbolic and Algebraic Computation. ISSAC'16. ACM, New York, NY, USA, pp. 143--150.
[6]
Chen, C., Davenport, J. H., May, J. P., Maza, M. M., Xia, B., Xiao, R., 2010. Triangular decomposition of semi-algebraic systems. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation. ISSAC'10. ACM, New York, NY, USA, pp. 187--194.
[7]
Chen, C., Davenport, J. H., May, J. P., Maza, M. M., Xia, B., Xiao, R., 2013. Triangular decomposition of semi-algebraic systems. Journal of Symbolic Computation 49, 3--26.
[8]
Chen, C., Davenport, J. H., Moreno Maza, M., Xia, B., Xiao, R., 2011. Computing with semi-algebraic sets represented by triangular decomposition. In: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation. ISSAC'11. ACM, New York, NY, USA, pp. 75--82.
[9]
Cox, D., Little, J., O'Shea, D., 1992. Ideals, varieties, and algorithms. Vol. 3. Springer.
[10]
Durvye, C., Lecerf, G., 2008. A concise proof of the Kronecker polynomial system solver from scratch. Expositiones Mathematicae 26 (2), 101--139.
[11]
Eisenbud, D., 1995. Commutative Algebra: with a View Toward Algebraic Geometry. Vol. 150. Springer New York, New York, NY.
[12]
Everett, H., Lazard, D., Lazard, S., Safey El Din, M., 2009. The Voronoi diagram of three lines. Discrete & Computational Geometry 42 (1), 94--130.
[13]
Fløystad, G., Kileel, J., Ottaviani, G., 2017. The Chow form of the essential variety in computer vision. Journal of Symbolic Computation.
[14]
Gelfand, I. M., Kapranov, M. M., Zelevinsky, A. V., 1994. Discriminants, Resultants, and Multidimensional Determinants. Birkhauser Boston, Boston, MA.
[15]
Giusti, M., Lecerf, G., Salvy, B., 2001. A Gröbner free alternative for polynomial system solving. Journal of complexity 17 (1), 154--211.
[16]
Jeronimo, G., Krick, T., Sabia, J., Sombra, M., 2004. The computational complexity of the Chow form. Foundations of Computational Mathematics 4 (1), 41--117.
[17]
Kalkbrener, M., 1991. Three contributions to elimination theory. Ph.D. thesis, Johannes Kepler University, Linz.
[18]
Kaltofen, E., 1989. Factorization of polynomials given by straight-line programs. Randomness and Computation 5, 375--412.
[19]
Kaltofen, E., Li, B., Yang, Z., Zhi, L., 2008. Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars. In: Proceedings of the Twenty-first International Symposium on Symbolic and Algebraic Computation. ISSAC'08. ACM, New York, NY, USA, pp. 155--164.
[20]
Kaltofen, E., Trager, B. M., 1990. Computing with polynomials given by black boxes for their evaluations: greatest common divisors, factorization, separation of numerators and denominators. Journal of Symbolic Computation 9 (3), 301--320.
[21]
Krick, T., 2002. Straight-line programs in polynomial equation solving. Foundations of computational mathematics: Minneapolis 312, 96--136.
[22]
Lasserre, J.-B., Laurent, M., Mourrain, B., Rostalski, P., Trébuchet, P., 2013. Moment matrices, border bases and real radical computation. Journal of Symbolic Computation 51, 63--85.
[23]
Lasserre, J. B., Laurent, M., Rostalski, P., 2008. Semidefinite characterization and computation of zero-dimensional real radical ideals. Foundations of Computational Mathematics 8 (5), 607--647.
[24]
Lax, P., 2005. On the discriminant of real symmetric matrices. Selected Papers Volume II, 577--586.
[25]
Lazard, D., 1991. A new method for solving algebraic systems of positive dimension. Discrete Applied Mathematics 33 (1--3), 147--160.
[26]
Lecerf, G., 2000. Computing an equidimensional decomposition of an algebraic variety by means of geometric resolutions. In: Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation. ISSAC'00. ACM, New York, NY, USA, pp. 209--216.
[27]
Lecerf, G., 2003. Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers. Journal of Complexity 19 (4), 564--596.
[28]
Ma, Y., Wang, C., Zhi, L., 2016. A certificate for semidefinite relaxations in computing positive-dimensional real radical ideals. Journal of Symbolic Computation 72, 1--20.
[29]
Marshall, M., 2008. Positive polynomials and sums of squares. No. 146. American Mathematical Soc.
[30]
Moreno Maza, M., 1997. Calculs de pgcd au-dessus des tours d'extensions simples et résolution des systèmes d'équations algébriques. Ph.D. thesis, Université Paris 6.
[31]
Neuhaus, R., 1998. Computation of real radicals of polynomial ideals -- II. Journal of Pure and Applied Algebra 124 (1), 261--280.
[32]
Poteaux, A., Schost, É., 2013. On the complexity of computing with zero-dimensional triangular sets. Journal of Symbolic Computation 50 (Supplement C), 110 -- 138.
[33]
Safey El Din, M., 2005. Finding sampling points on real hypersurfaces is easier in singular situations. MEGA (Effective Methods in Algebraic Geometry) Electronic proceedings.
[34]
Safey El Din, M., 2007. RAGLib (Real Algebraic Geometry Library), Maple package.
[35]
Safey El Din, M., 2007. Testing sign conditions on a multivariate polynomial and applications. Mathematics in Computer Science 1 (1), 177--207.
[36]
Safey El Din, M., Schost, É., 2003. Polar varieties and computation of one point in each connected component of a smooth real algebraic set. In: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation. ISSAC'03. ACM, New York, NY, USA, pp. 224--231.
[37]
Safey El Din, M., Schost, É., 2004. Properness defects of projections and computation of at least one point in each connected component of a real algebraic set. Discrete & Computational Geometry 32 (3), 417--430.
[38]
Safey El Din, M., Schost, É., 2017. A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets. Journal of the ACM 63 (6), 48:1--48:37.
[39]
Schost, É., 2003. Computing parametric geometric resolutions. Applicable Algebra in Engineering, Communication and Computing 13 (5), 349--393.
[40]
Spang, S. J., 2007. On the computation of the real radical. Ph.D. thesis, Technische Universitat Kaiserslautern.
[41]
Spang, S. J., 2008. A zero-dimensional approach to compute real radicals. The Computer Science Journal of Moldova 16 (1), 64--92.
[42]
Wang, D., 1998. Decomposing polynomial systems into simple systems. Journal of Symbolic Computation 25 (3), 295--314.
[43]
Wu, W.-T., 1984. Basic principles of mechanical theorem proving in elementary geometries. Journal of Systems Science and Mathematical Sciences 4, 207--235.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
ISSAC '18: Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation
July 2018
418 pages
ISBN:9781450355506
DOI:10.1145/3208976
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 July 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. polynomial system
  2. real algebraic geometry
  3. real radical

Qualifiers

  • Research-article

Funding Sources

Conference

ISSAC '18

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)1
Reflects downloads up to 26 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Smooth points on semi-algebraic setsJournal of Symbolic Computation10.1016/j.jsc.2022.09.003116(183-212)Online publication date: May-2023
  • (2022)On the effective Putinar’s Positivstellensatz and moment approximationMathematical Programming10.1007/s10107-022-01877-6200:1(71-103)Online publication date: 6-Sep-2022
  • (2021)Smooth points on semi-algebraic setsACM Communications in Computer Algebra10.1145/3457341.345734754:3(105-108)Online publication date: 15-Mar-2021
  • (2021)Tensor Manifold with Tucker Rank ConstraintsAsia-Pacific Journal of Operational Research10.1142/S021759592150022639:02Online publication date: 11-Jun-2021
  • (2020)An Improvement of the Rational Representation for High-Dimensional SystemsJournal of Systems Science and Complexity10.1007/s11424-020-9316-4Online publication date: 7-Nov-2020
  • (2019)Global Optimization of Polynomials over Real Algebraic SetsJournal of Systems Science and Complexity10.1007/s11424-019-8351-532:1(158-184)Online publication date: 14-Feb-2019

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media