Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A Gröbner Free Alternative for Polynomial System Solving

Published: 01 March 2001 Publication History

Abstract

Given a system of polynomial equations and inequations with coefficients in the field of rational numbers, we show how to compute a geometric resolution of the set of common roots of the system over the field of complex numbers. A geometric resolution consists of a primitive element of the algebraic extension defined by the set of roots, its minimal polynomial, and the parametrizations of the coordinates. Such a representation of the solutions has a long history which goes back to Leopold Kronecker and has been revisited many times in computer algebra. We introduce a new generation of probabilistic algorithms where all the computations use only univariate or bivariate polynomials. We give a new codification of the set of solutions of a positive dimensional algebraic variety relying on a new global version of Newton's iterator. Roughly speaking the complexity of our algorithm is polynomial in some kind of degree of the system, in its height, and linear in the complexity of evaluation of the system. We present our implementation in the Magma system which is called Kronecker in homage to his method for solving systems of polynomial equations. We show that the theoretical complexity of our algorithm is well reflected in practice and we exhibit some cases for which our program is more efficient than the other available software.

References

[1]
Magma, http://www.maths.usyd.edu.au:8000/u/magma/.
[2]
Medicis, http://www.medicis.polytechnique.fr/.
[3]
J. Abdeljaoued, Université de Franche¿Comté, Besançon, 1997.
[4]
A.V. Aho, J.E. Hopcroft, J.D. Ullman, Addison¿Wesley, Reading, 1974.
[5]
M. Almeida, L. D'Alfonso, P. Solernó, On the degrees of bases of free modules over a polynomial ring, Math. Z (1998) 1-24.
[6]
M.E. Alonso, E. Becker, M.-F. Roy, T. Wörmann, Zeroes, multiplicities and idempotents for zerodimensional systems, Birkhäuser, Basel, 1996.
[7]
I. Armendáriz, P. Solernó, On the computation of the radical of polynomial complete intersection ideals, in: Lecture Notes in Comput. Sci, 948, Springer-Verlag, New York/Berlin, 1995, pp. 106-119.
[8]
W. Baur, V. Strassen, The complexity of partial derivatives, Theoret. Comput. Sci, 22 (1983) 317-330.
[9]
S.J. Berkowitz, On computing the determinant in small parallel time using a small number of processors, Inform. Proc. Lett, 18 (1984) 147-150.
[10]
D. Bini, V. Pan, Birkhäuser, Boston/Basel/Berlin, 1994.
[11]
A. Borodin, J. Munro, Elsevier, Amsterdam, 1972.
[12]
W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput, 24 (1997).
[13]
J. Bunch, J. Hopcroft, Triangular factorization and inversion by fast matrix multiplication, Math. Comp, 28 (1974) 231-236.
[14]
P. Bürgisser, M. Clausen, M.A. Shokrolahi, Springer-Verlag, New York/Berlin, 1997.
[15]
L. Caniglia, A. Galligo, J. Heintz, Borne simple exponentielle pour les degrés dans le théorème des zéros sur un corps de caractéristique quelconque, C.R. Acad. Sci. Paris, 307 (1988) 255-258.
[16]
J. Cannon, C. Playoust, Magma: A new computer algebra system, Euromath Bull, 2 (1996) 113-144.
[17]
J. Canny, Some algebraic and geometric problems in PSPACE, in Proceedings, 20 ACM STOC, 1988, pp. 460-467.
[18]
D. Castro, M. Giusti, J. Heintz, G. Matera, L.M. Pardo, Data structures and smooth interpolation procedures in elimination theory, Manuscript of Facultad de Ciencias (1999).
[19]
A. L. Chistov, and, D. Y. Grigoriev, Polynomial-time factoring of multi-variable polynomials over a global field, LOMI preprint, E-5-82, Steklov Institute, Leningrad, 1982.
[20]
S. Collart, M. Kalkbrener, D. Mall, Converting bases with the Gröbner walk, J. Symbolic Comput, 24 (1997) 465-469.
[21]
D. Coppersmith and S. Winograd, Matrix multiplications via arithmetic progression, in 19th ACM STOC, 1987, pp. 1-6.
[22]
L. Csanky, Fast parallel matrix inversion algorithms, SIAM J. Comput, 5 (1976) 618-623.
[23]
J. Davenport, Y. Siret, E. Tournier, Masson, Paris, 1987.
[24]
J. Dixon, Exact solution of linear equations using p-adic expansions, Numer. Math, 40 (1982) 137-141.
[25]
J.-C. Faugère, and, F. Rouillier, Mupad interface for gb/realsolving, http://www.loria.fr/rouillie/RSDoc/mupdoc/mupdoc.html/, 1998.
[26]
J.-C. Faugère, 1995.
[27]
J.-C. Faugère, 1997.
[28]
J.-C. Faugère, P. Gianni, D. Lazard, T. Mora, Efficient computation of zero-dimensional Gröbner bases by change of ordering, J. Symbolic Comput, 16 (1993) 329-344.
[29]
C. M. Fiduccia, A rational view of the fast Fourier transform, in, 25th Allerton Conf. Comm, Control and Computing, 1987.
[30]
W. Fulton, Springer-Verlag, New York/Berlin, 1984.
[31]
K.O. Geddes, S.R. Czapor, G. Labahn, Kluwer Academic, Dordrecht, 1994.
[32]
P. Gianni, T. Mora, Algebraic solution of systems of polynomial equations using Gröbner bases, Springer-Verlag, New York/Berlin, 1989.
[33]
M. Giusti, K. Hägele, J. Heintz, J.E. Morais, J.L. Montaña, L.M. Pardo, Lower bounds for Diophantine approximation, 1997.
[34]
M. Giusti, K. Hägele, G. Lecerf, J. Marchand, B. Salvy, Computing the dimension of a projective variety: The projective Noether Maple Package, J. Symbolic Comput, 30 (2000) 291-307.
[35]
M. Giusti, J. Heintz, La détermination des points isolés et de la dimension d'une variété algébrique peut se faire en temps polynomial, in: Symposia Matematica, 34, Cambridge Univ. Press, Cambridge, 1993, pp. 216-256.
[36]
M. Giusti, J. Heintz, J.E. Morais, J. Morgenstern, L.M. Pardo, Straight-line programs in geometric elimination theory, J. Pure Appl. Algebra, 124 (1998) 101-146.
[37]
M. Giusti, J. Heintz, J.E. Morais, L.M. Pardo, When polynomial equation systems can be solved fast?, in: Lecture Notes in Comput. Sci, 948, Springer-Verlag, New York/Berlin, 1995, pp. 205-231.
[38]
M. Giusti, J. Heintz, J.E. Morais, L.M. Pardo, Le rôle des structures de données dans les problèmes d'élimination, C.R. Acad. Sci. Paris, 325 (1997) 1223-1228.
[39]
M. Giusti, J. Heintz, J. Sabia, On the efficiency of effective Nullstellensätze, Comput. Complexity, 3 (1993) 56-95.
[40]
K. Hägele, Universidad de Cantabria, Santander, 1998.
[41]
K. Hägele, and, J. L. Montaña, Polynomial random test for the equivalence problem of integers given by arithmetic circuits, preprint 4/97, Depto. Matemáticas, Universidad de Cantabria, Santander, Spain, January 1997.
[42]
K. Hägele, J.E. Morais, L.M. Pardo, M. Sombra, On the intrinsic complexity of the arithmetic Nullstellensatz, in: Proceedings of TERA '97, Córdoba, September 1997.
[43]
J. Heintz, Definability and fast quantifier elimination in algebraically closed fields, Theoret. Comput. Sci, 24 (1983) 239-277.
[44]
J. Heintz, On the computational complexity of polynomials and bilinear mappings: A survey, Springer-Verlag, New York/Berlin, 1989.
[45]
J. Heintz, G. Matera, and, A. Waissbein, On the time-space complexity of geometric elimination procedures, manuscript, Universidad Favaloro, Buenos Aires, Argentina, 1999.
[46]
J. Heintz, M.-F. Roy, P. Solernó, Sur la complexité du principe de Tarski¿Seidenberg, Bull. Soc. Math. France, 118 (1990) 101-126.
[47]
H. Kobayashi, T. Fujise, A. Furukawa, Solving systems of algebraic equations by general elimination method, J. Symbolic Comput, 5 (1988) 303-320.
[48]
J. König, Teubner, Leipzig, 1903.
[49]
T. Krick, L.M. Pardo, Une approche informatique pour l'approximation diophantienne, C.R. Acad. Sci. Paris, 318 (1994) 407-412.
[50]
T. Krick, L.M. Pardo, A computational method for Diophantine approximation, in: Progress in Mathematics, 143, Birkhäuser, Basel, 1996, pp. 193-254.
[51]
L. Kronecker, Grundzüge einer arithmetischen Theorie der algebraischen Grössen, J. Reine Angew. Math, 92 (1882) 1-122.
[52]
E. Kruppa, Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung, Sitz.-Ber. Akad. Wiss. Wien. Math. Naturw. Kl (1913).
[53]
E. Kunz, Birkhäuser, Basel, 1985.
[54]
Y.N. Lakshman, D. Lazard, On the complexity of zero-dimensional algebraic systems, Birkhäuser, Basel, 1991.
[55]
G. Lecerf, Kronecker, a package for Magma for polynomial system solving, UMS MEDICIS, Laboratoire GAGE, http://www.gage.polytechnique.fr/lecerf/software/kronecker, 1999.
[56]
U.J.J. Leverrier, Sur les variations séculaires des éléments elliptiques des sept planètes principales: Mercure, Vénus, la terre, Mars, Jupiter, Saturne et Uranus, J. Math. Pures Appl, 4 (1840) 220-254.
[57]
T. Lickteig and M.-F. Roy, Sylvester-Habicht sequences and fast Cauchy index computation, in Calcolo 33, 1996, pp. 337-371.
[58]
F.S. Macaulay, Cambridge Univ. Press, Cambridge, 1916.
[59]
G. Matera, Universidad de Buenos Aires, 1997.
[60]
S. Maybank, O. Faugeras, A theory of self-calibration of a moving camera, Internat. J. Comput. Vision, 8 (1992) 123-151.
[61]
R. Moenck and A. B. Borodin, Fast computation of GCD's, in 5th Annual ACM Symposium on Theory of Computing, 1973, pp. 142-151.
[62]
J.E. Morais, Universidad de Cantabria, Santander, 1997.
[63]
H.J. Nussbaumer, Fast polynomial transform algorithms for digital convolutions, IEEE Trans. Acoustic Speech Signal Proc, 28 (1980) 205-215.
[64]
L.M. Pardo, How lower and upper complexity bounds meet in elimination theory, in: Lecture Notes in Computer Science, 948, Springer-Verlag, Berlin, 1995, pp. 33-69.
[65]
J. Renegar, On the computational complexity and geometry of the first-order theory of the reals, Part I, J. Symbolic Comput, 13 (1992) 255-299.
[66]
F. Rouillier, Université de Rennes I, May 1996.
[67]
F. Rouillier, Solving zero-dimensional systems through the rational univariate representation, Appl. Algebra Engrg. Comm. Comput, 9 (1999) 433-461.
[68]
J. Sabia, P. Solernó, Bounds for traces in complete intersections and degrees in the Nullstellensatz, Appl. Algebra Engrg. Comm. Comput, 6 (1996) 353-376.
[69]
A. Schönhage, Schnelle Berechnung von Kettenbruchentwicklungen, Acta Inform, 1 (1971) 139-144.
[70]
A. Schönhage, V. Strassen, Schnelle Multiplikation großer Zahlen, Computing, 7 (1971) 281-292.
[71]
A. Schönhage, V. Strassen, Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2, Acta Inform, 7 (1977) 395-398.
[72]
J.T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. Assos. Comput. Mach, 27 (1980) 701-717.
[73]
M. Sieveking, An algorithm for division of power series, Computing, 10 (1972) 153-156.
[74]
S. Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc, 4 (1981) 1-36.
[75]
S. Smale, Algorithms for solving equations, in Proceedings of the International Congress of Mathematics, Berkeley, CA, 1986, pp. 172-195.
[76]
H.-J. Stoß, On the representation of rational functions of bounded complexity, Theoret. Comput. Sci, 64 (1989) 1-13.
[77]
V. Strassen, Berechnung und Programm, I, II, Acta Inform.11972, 320-355, 21973, 64-79.
[78]
V. Strassen, Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten, Numer. Math, 20 (1973) 238-251.
[79]
TERA Development Group, A (hopefully) efficient polynomial equation system solver, manuscript, [email protected], 1998.
[80]
, Wiley, Chichester/New York, 1996.
[81]
W. Vogel, Springer-VerlagTata Institute of Fundamental Research, New York/Berlin, 1984.
[82]
J. von zur Gathen, Parallel arithmetic computations: A survey, in: Lecture Notes in Comput. Sci, 233, Springer-Verlag, New York/Berlin, 1986, pp. 93-112.
[83]
P. Wadler, Deforestation: Transforming programs to eliminate trees, Theoret. Comput. Sci, 73 (1990) 231-248.
[84]
V. Weispfenning, T. Becker, Springer-Verlag, New York/Berlin, 1993.
[85]
R. Zippel, Probabilistic algorithms for sparse polynomials, Springer-Verlag, New York, 1979.
[86]
R. Zippel, Kluwer Academic, Dordrecht, 1993.

Cited By

View all
  • (2024)Computing Generic Fibers of Polynomial Ideals with FGLM and Hensel LiftingProceedings of the 2024 International Symposium on Symbolic and Algebraic Computation10.1145/3666000.3669703(307-315)Online publication date: 16-Jul-2024
  • (2024)u-generation: solving systems of polynomials equation-by-equationNumerical Algorithms10.1007/s11075-023-01590-195:2(813-838)Online publication date: 1-Feb-2024
  • (2023)Faster real root decision algorithm for symmetric polynomialsProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597097(452-460)Online publication date: 24-Jul-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Complexity
Journal of Complexity  Volume 17, Issue 1
March 1, 2001
303 pages
ISSN:0885-064X
Issue’s Table of Contents

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 March 2001

Author Tags

  1. elimination
  2. geometric resolution
  3. polynomial system solving

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Computing Generic Fibers of Polynomial Ideals with FGLM and Hensel LiftingProceedings of the 2024 International Symposium on Symbolic and Algebraic Computation10.1145/3666000.3669703(307-315)Online publication date: 16-Jul-2024
  • (2024)u-generation: solving systems of polynomials equation-by-equationNumerical Algorithms10.1007/s11075-023-01590-195:2(813-838)Online publication date: 1-Feb-2024
  • (2023)Faster real root decision algorithm for symmetric polynomialsProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597097(452-460)Online publication date: 24-Jul-2023
  • (2023)p-adic algorithm for bivariate Gröbner basesProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597086(508-516)Online publication date: 24-Jul-2023
  • (2023)Further perspectives on eliminationApplicable Algebra in Engineering, Communication and Computing10.1007/s00200-023-00618-234:5(745-749)Online publication date: 20-Jul-2023
  • (2022)Computing Critical Points for Algebraic Systems Defined by Hyperoctahedral Invariant PolynomialsProceedings of the 2022 International Symposium on Symbolic and Algebraic Computation10.1145/3476446.3536181(167-175)Online publication date: 4-Jul-2022
  • (2022)Solving Sparse Polynomial Systems using Gröbner Bases and ResultantsProceedings of the 2022 International Symposium on Symbolic and Algebraic Computation10.1145/3476446.3535498(21-30)Online publication date: 4-Jul-2022
  • (2022)Algorithms for Discrete Differential Equations of Order 1Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation10.1145/3476446.3535471(101-110)Online publication date: 4-Jul-2022
  • (2022)Jacobi’s Bound: Jacobi’s results translated in Kőnig’s, Egerváry’s and Ritt’s mathematical languagesApplicable Algebra in Engineering, Communication and Computing10.1007/s00200-022-00547-634:5(793-885)Online publication date: 25-Mar-2022
  • (2021)Computing the Dimension of Real Algebraic SetsProceedings of the 2021 International Symposium on Symbolic and Algebraic Computation10.1145/3452143.3465551(257-264)Online publication date: 18-Jul-2021
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media