Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3173574.3174039acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

CatAR: A Novel Stereoscopic Augmented Reality Cataract Surgery Training System with Dexterous Instruments Tracking Technology

Published: 21 April 2018 Publication History

Abstract

We propose CatAR, a novel stereoscopic augmented reality (AR) cataract surgery training system. It provides dexterous instrument tracking ability using a specially designed infrared optical system with 2 cameras and 1 reflective marker. The tracking accuracy on the instrument tip is 20 µm, much higher than previous simulators. Moreover, our system allows trainees to use and to see real surgical instruments while practicing. Five training modules with 31 parameters were designed and 28 participants were enrolled to conduct efficacy and validity tests. The results revealed significant differences between novice and experienced surgeons. Improvements in surgical skills after practicing with CatAR were also significant.

Supplementary Material

suppl.mov (pn3812-file3.mp4)
Supplemental video
suppl.mov (pn3812-file5.mp4)
Supplemental video
MP4 File (pn3812.mp4)

References

[1]
M. Achibet, A. Girard, A. Talvas, M. Marchal and A. Lécuyer. 2015. Elastic-Arm: Human-scale passive haptic feedback for augmenting interaction and perception in virtual environments. in 2015 IEEE Virtual Reality (VR), 63--68.
[2]
P. P. Banerjee, D. P. Edward, S. Liang, C. S. Bouchard, P. J. Bryar, R. Ahuja, P. Dray and D. P. Bailey. 2012. Concurrent and face validity of a capsulorhexis simulation with respect to human patients. Stud Health Technol Inform, 173. 35--41.
[3]
E. Bloch, N. Uddin, L. Gannon, K. Rantell and S. Jain. 2015. The effects of absence of stereopsis on performance of a simulated surgical task in twodimensional and three-dimensional viewing conditions. Br J Ophthalmol, 99 (2). 240--245.
[4]
K. S. Choi, S. Soo and F. L. Chung. 2009. A virtual training simulator for learning cataract surgery with phacoemulsification. Comput Biol Med, 39 (11). 10201031.
[5]
D. A. Cook, R. Brydges, B. Zendejas, S. J. Hamstra and R. Hatala. 2013. Technology-enhanced simulation to assess health professionals: a systematic review of validity evidence, research methods, and reporting quality. Acad Med, 88 (6). 872--883.
[6]
J. Dequidt, H. Courtecuisse, O. Comas, J. Allard, C. Duriez, S. Cotin, E. Dumortier, O. Wavreille and J. F. Rouland. 2013. Computer-based training system for cataract surgery. Simulation, 89 (12). 1421--1435.
[7]
L. Doyle, N. Gauthier, S. Ramanathan and A. Okamura. 2008. A simulator to explore the role of haptic feedback in cataract surgery training. Stud Health Technol Inform, 132. 106--111.
[8]
Mario Gomez-Blanco, Cameron N. Riviere and Pradeep K. Khosla. 1999. Sensing Hand Tremor in a Vitreoretinal Microsurgical Instrument. in.
[9]
A. Hamam, S. Nourian, N. R. El-far, F. Malric, X. Shen and N. D. Georganas. 2006. A distributed, collaborative and haptic-enabled eye cataract surgery application with a user interface on desktop, stereo desktop and immersive displays. in 2006 IEEE International Workshop on Haptic Audio Visual Environments and their Applications (HAVE 2006), 105--110.
[10]
R. C. Harwell and R. L. Ferguson. 1983. Physiologic tremor and microsurgery. Microsurgery, 4 (3). 187--192.
[11]
HelpMeSee. 2013. Simulation-Based Training Program, http://helpmesee.org/Our-Technology.
[12]
Yu-Hsuan Huang, Wan-Ling Yang, Yi-Lung Kao, YuKai Chiu, Ya-Bo Huang, Hao-Yu Chang and Ming Ouhyoung. 2016. A novel dexterous instrument tracking system for augmented reality cataract surgery training system SIGGRAPH ASIA 2016 VR Showcase, ACM, Macau, 1--2.
[13]
Yu-Hsuan Huang, Tzu-Chieh Yu, Pei-Hsuan Tsai, YuXiang Wang, Wan-Ling Yang and Ming Ouhyoung. 2015. Scope+: a stereoscopic video see-through augmented reality microscope SIGGRAPH Asia 2015 Emerging Technologies, ACM, Kobe, Japan, 1--3.
[14]
Ian W. Hunter, Lynette Jones, Tilemachos Doukoglou, Serge Lafontaine, Peter J. Hunter and Mark Sagar. 1995. Ophthalmic microsurgical robot and surgical simulator. in, 184--190.
[15]
B. Julesz. 1960. Binocular Depth Perception of Computer-Generated Patterns. Bell System Technical Journal, 39 (5). 1125--1162.
[16]
A. Kopfle, F. Beier, C. Wagner and R. Manner. 2007. Real-time Marker-based Tracking of a Non-rigid Object. Stud Health Technol Inform, 125. 232--234.
[17]
Chee Kiang Lam, Kenneth Sundaraj and M. Nazri Sulaiman. 2013. Virtual Reality Simulator for Phacoemulsification Cataract Surgery Education and Training. Procedia Computer Science, 18. 742--748.
[18]
C. G. Laurell, P. Soderberg, L. Nordh, E. Skarman and P. Nordqvist. 2004. Computer-simulated phacoemulsification. Ophthalmology, 111 (4). 693--698.
[19]
H. Y. Lin, Y. J. Chuang, X. Tang, C. C. Lin, H. Y. Chen and P. J. Lin. 2017. Pivot concept: achieving a goodquality capsulorrhexis through a 2.2 mm or less clear corneal incision by using standard capsulorhexis forceps. Int J Ophthalmol, 10 (7). 1175--1177.
[20]
Bing Liu, Dennis Maier, Markus Schill and Reinhard Maenner. ROBUST REAL-TIME LOCALIZATION OF SURGICAL INSTRUMENTS IN THE EYE SUGERY SIMULATOR (EYESI).
[21]
M. A. Mahr and D. O. Hodge. 2008. Construct validity of anterior segment anti-tremor and forceps surgical simulator training modules: attending versus resident surgeon performance. J Cataract Refract Surg, 34 (6). 980--985.
[22]
C. A. McCannel, D. C. Reed and D. R. Goldman. 2013. Ophthalmic surgery simulator training improves resident performance of capsulorhexis in the operating room. Ophthalmology, 120 (12). 2456--2461.
[23]
NVIDIA. 2014. Automotive Screen Density Calculator, http://phrogz.net/tmp/ScreenDens2In.html.
[24]
FCI ophthalmics. 2011. KITARO Kits: A Superior Way to Practice Cataract Surgery, http://www.fciophthalmics.com/blog/kitaro-kits-a-superior-way-topractice-cataract-surgery/.
[25]
American Academy of Ophthalmology. 2007. Optics of the Human Eye. in Clinical Optics, American Academy of Ophthalmology, USA, 105--123.
[26]
World Health Organization. 2010. Gobal data on visual impairment 2010, World Health Organization, http://www.who.int/blindness/publications/globaldata/e n/.
[27]
S. S. Patel, M. T. Ukwade, H. E. Bedell and V. Sampath. 2003. Near stereothresholds measured with random-dot stereograms using phase disparities. Optometry, 74 (7). 453--462.
[28]
R. Pointdujour, H. Ahmad, M. Liu, E. Smith and D. Lazzaro. 2011. beta-Blockade Affects Simulator Scores. Ophthalmology, 118 (9). 1893-U1237.
[29]
B. Privett, E. Greenlee, G. Rogers and T. A. Oetting. 2010. Construct validity of a surgical simulator as a valid model for capsulorhexis training. J Cataract Refract Surg, 36 (11). 1835--1838.
[30]
R. Sachdeva and E. I. Traboulsi. 2011. Performance of patients with deficient stereoacuity on the EYESi microsurgical simulator. Am J Ophthalmol, 151 (3). 427--433 e421.
[31]
Markus A. Schill, Clemens Wagner, Marc Hennen, Hans-Joachim Bender and Reinhard Männer. 1999. EyeSi -- A Simulator for Intra-ocular Surgery. in Taylor, C. and Colchester, A. eds. Medical Image Computing and Computer-Assisted Intervention -- MICCAI'99: Second International Conference, Cambridge, UK, September 19--22, 1999. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 1166--1174.
[32]
Oliver Schuppe. 2012. An Optical Tracking System for a Microsufgical Training Simulator. Stud Health Technol Inform, 173. 445--449. 10.3233/978--1--61499022--2--445
[33]
M. Selvander and P. Asman. 2013. Cataract surgeons outperform medical students in Eyesi virtual reality cataract surgery: evidence for construct validity. Acta Ophthalmol, 91 (5). 469--474.
[34]
M. Selvander and P. Asman. 2011. Stereoacuity and intraocular surgical skill: effect of stereoacuity level on virtual reality intraocular surgical performance. J Cataract Refract Surg, 37 (12). 2188--2193.
[35]
Michael J. Sinclair, John W. Peifer, Ray Haleblian, Malcolm N. Luxenberg, Keith Green and David S. Hull. 1995. Computer-simulated Eye Surgery. Ophthalmology, 102 (3). 517--521.
[36]
Jacquelyn Slomka. 1992. Playing with Propranolol. Hastings Center Report, 22 (4). 13--17. 10.2307/3563017
[37]
D. J. Solverson, R. A. Mazzoli, W. R. Raymond, M. L. Nelson, E. A. Hansen, M. F. Torres, A. Bhandari and C. D. Hartranft. 2009. Virtual reality simulation in acquiring and differentiating basic ophthalmic microsurgical skills. Simul Healthc, 4 (2). 98--103.
[38]
R. Sudan, J. S. Titiyal, H. S. Sethi and H. K. Rai. 2002. Animal model for teaching phacoemulsification. J Cataract Refract Surg, 28 (1). 4--5.
[39]
A. S. Thomsen, J. F. Kiilgaard, H. Kjaerbo, M. la Cour and L. Konge. 2015. Simulation-based certification for cataract surgery. Acta Ophthalmol, 93 (5). 416--421.
[40]
A. S. Thomsen, J. F. Kiilgaard, M. la Cour, R. Brydges and L. Konge. 2017. Is there inter-procedural transfer of skills in intraocular surgery? A randomized controlled trial. Acta Ophthalmol.
[41]
A. S. Vergmann, A. H. Vestergaard and J. Grauslund. 2017. Virtual vitreoretinal surgery: validation of a training programme. Acta Ophthalmol, 95 (1). 60--65.
[42]
S. Waqar, O. Williams, J. Park, N. Modi, T. Kersey and T. Sleep. 2012. Can virtual reality simulation help to determine the importance of stereopsis in intraocular surgery? Br J Ophthalmol, 96 (5). 742--746.
[43]
R. Webster, J. Sassani, R. Shenk, M. Harris, J. Gerber, A. Benson, J. Blumenstock, C. Billman and R. Haluck. 2005. Simulating the continuous curvilinear capsulorhexis procedure during cataract surgery on the EYESI system. Stud Health Technol Inform, 111. 592595.
[44]
M. P. Weikert, L. Wang, J. Barrish, R. Dimalanta and D. D. Koch. 2012. Quantitative measurement of wound architecture in microincision cataract surgery. J Cataract Refract Surg, 38 (8). 1460--1466.
[45]
L. M. Wilcox and J. M. Harris. 2010. Fundamentals of Stereopsis.

Cited By

View all
  • (2023)GAuze-MIcrosuture-FICATION: Gamification in Microsuture training with real-time feedbackProceedings of the Augmented Humans International Conference 202310.1145/3582700.3582704(15-26)Online publication date: 12-Mar-2023
  • (2023)Image-based recognition of surgical instruments by means of convolutional neural networksInternational Journal of Computer Assisted Radiology and Surgery10.1007/s11548-023-02885-318:11(2043-2049)Online publication date: 18-May-2023
  • (2023)User's image perception improved strategy and application of augmented reality systems in smart medical care: A reviewThe International Journal of Medical Robotics and Computer Assisted Surgery10.1002/rcs.249719:3Online publication date: 26-Jan-2023
  • Show More Cited By

Index Terms

  1. CatAR: A Novel Stereoscopic Augmented Reality Cataract Surgery Training System with Dexterous Instruments Tracking Technology

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CHI '18: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
    April 2018
    8489 pages
    ISBN:9781450356206
    DOI:10.1145/3173574
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 21 April 2018

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. augmented reality
    2. cataract
    3. dexterous input
    4. instrument tracking
    5. microsurgery
    6. surgical simulator
    7. surgical training

    Qualifiers

    • Research-article

    Funding Sources

    • Ministry of Science and Technology, Taiwan

    Conference

    CHI '18
    Sponsor:

    Acceptance Rates

    CHI '18 Paper Acceptance Rate 666 of 2,590 submissions, 26%;
    Overall Acceptance Rate 6,199 of 26,314 submissions, 24%

    Upcoming Conference

    CHI '25
    CHI Conference on Human Factors in Computing Systems
    April 26 - May 1, 2025
    Yokohama , Japan

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)33
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 17 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)GAuze-MIcrosuture-FICATION: Gamification in Microsuture training with real-time feedbackProceedings of the Augmented Humans International Conference 202310.1145/3582700.3582704(15-26)Online publication date: 12-Mar-2023
    • (2023)Image-based recognition of surgical instruments by means of convolutional neural networksInternational Journal of Computer Assisted Radiology and Surgery10.1007/s11548-023-02885-318:11(2043-2049)Online publication date: 18-May-2023
    • (2023)User's image perception improved strategy and application of augmented reality systems in smart medical care: A reviewThe International Journal of Medical Robotics and Computer Assisted Surgery10.1002/rcs.249719:3Online publication date: 26-Jan-2023
    • (2022)Augmented Reality Based Video Shooting Guidance for Novice UsersProceedings of the ACM on Human-Computer Interaction10.1145/35467506:MHCI(1-20)Online publication date: 20-Sep-2022
    • (2022)Review on Needle Insertion Haptic SimulationCurrent Robotics Reports10.1007/s43154-022-00093-63:4(259-270)Online publication date: 17-Sep-2022
    • (2021)Visuo-haptic Illusions for Motor Skill Acquisition in Virtual RealityProceedings of the 2021 ACM Symposium on Spatial User Interaction10.1145/3485279.3485291(1-9)Online publication date: 9-Nov-2021
    • (2019)Towards Surgical RobotsProceedings of the 31st Australian Conference on Human-Computer-Interaction10.1145/3369457.3370916(255-265)Online publication date: 2-Dec-2019
    • (2019)Impacts of Telemanipulation in Robotic Assisted SurgeryProceedings of the 2019 CHI Conference on Human Factors in Computing Systems10.1145/3290605.3300813(1-15)Online publication date: 2-May-2019

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media