Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3144789.3144807acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiciipConference Proceedingsconference-collections
research-article

An Overview of Label Space Dimension Reduction for Multi-Label Classification

Published: 17 July 2017 Publication History

Abstract

Multi-label classification with many labels are common in real-world application. However, traditional multi-label classifiers often become computationally inefficient for hundreds or even thousands of labels. Therefore, the label space dimension reduction is designed to address this problem. In this paper, the existing studies of label space dimension reduction are summarized; especially, these studies were classified into two categories: label space dimension reduction based on transformed labels and label subset; meanwhile, we analyze the studies belonging to each type and give the experimental comparison of two typical LSDR algorithms. To the best of our knowledge, this is the first effort to review the development of label space dimension reduction.

References

[1]
Kong D, Ding C, Huang H, et al. 2012. Multi-label relieff and f-statistic feature selections for image annotation{C}//Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012: 2352--2359.
[2]
Liu L, Tang L, He L, et al. 2017. Predicting protein function via multi-label supervised topic model on gene ontology{J}. Biotechnology & Biotechnological Equipment, 31(3): 630--638.
[3]
Agrawal R, Gupta A, Prabhu Y, et al. 2013. Multi-label learning with millions of labels: Recommending advertiser bid phrases for web pages{C}//Proceedings of the 22nd international conference on World Wide Web. ACM, 2013: 13--24.
[4]
Li L, Wang H. 2016. Towards Label Imbalance in Multi-label Classification with Many Labels{J}. arXiv preprint arXiv:1604.01304, 2016.
[5]
Liu T Y, Yang Y, Wan H, Zeng H. 2005. Support vector machines classification with a very large-scale taxonomy. Acm Sigkdd Explorations Newsletter, 2005; 7(1):36--43.
[6]
Rubin T N, Chambers A, Smyth P, Steyvers M. 2012. Statistical topic models for multi-label document classification. Machine Learning, 2012; 88(1):157--208.
[7]
Hsu D J, Kakade S, Langford J, Zhang T. 2009. Multi-label prediction via compressed sensing. Computer Science, 22: 772--780.
[8]
Zhang Y, Schneider J G. 2011. Multi-Label Output Codes using Canonical Correlation Analysis. 15(1):873--882.
[9]
Chen Y N, Lin H T. 2012. Feature-aware label space dimension reduction for multi-label classification. Advances in Neural Information Processing Systems, 2012: 1529--1537.
[10]
Li L, Zhang L, Wang H. 2014. Muli-label Text Categorization with Hidden Components, Conference on Empirical Methods in Natural Language Processing. 2014:1816--1821.
[11]
Tai F, Lin H T. 2012. Multilabel classification with principal label space transformation{J}. Neural Computation, 24(9): 2508--2542.
[12]
Jolliffe I. 2002. Principal component analysis {M}. John Wiley & Sons, Ltd.
[13]
Tai F, Lin H T. 2012. Multilabel classification with principal label space transformation {J}. Neural Computation, 24(9): 2508--2542.
[14]
Lin Z, Ding G, Hu M, et al. 2014. Multi-label Classification via Feature-aware Implicit Label Space Encoding{C}//ICML. 2014: 325--333.
[15]
Li X, Guo Y. 2015. Multi-Label Classification with Feature-Aware Non-Linear Label Space Transformation{C}//IJCAI. 2015: 3635--3642.
[16]
Cao L, Xu J. 2015. A label compression coding approach through maximizing dependence between features and labels for multi-label classification{C}//Neural Networks (IJCNN), 2015 International Joint Conference on. IEEE, 2015: 1--8.
[17]
Zhou T, Tao D, Wu X. 2012. Compressed labeling on distilled labelsets for multi-label learning{J}. Machine Learning, 2012, 88(1-2): 69--126.
[18]
Law E, Settles B, Mitchell T. 2010. Learning to Tag from Open Vocabulary Labels{J}. Ecml Pkdd ', 6322:211--226.
[19]
Blei D M, Ng A Y, Jordan M I. 2003. Latent dirichlet allocation{J}. Journal of Machine Learning Research, 3:993--1022.
[20]
Kap Kapoor A, Viswanathan R, Jain P. 2012. Multilabel classification using bayesian compressed sensing{C}//Advances in Neural Information Processing Systems. 2012: 2645--2653.
[21]
Weston J, Bengio S, Usunier N. Wsabie. 2011. Scaling up to large vocabulary image annotation{C}//IJCAI. 11: 2764--2770.
[22]
Balasubramanian K, Lebanon G. 2012. The Landmark Selection Method for Multiple Output Prediction{J}. Computer Science.
[23]
Bi W, Kwok J T Y. 2013. Efficient Multi-label Classification with Many Labels{C}//ICML (3). 2013: 405--413.
[24]
Wicker J, Pfahringer B, Kramer S. 2012. Multi-label classification using boolean matrix decomposition{C}//Proceedings of the 27th Annual ACM Symposium on Applied Computing. ACM, 2012: 179--186.
[25]
Monson S D, Pullman N J, Rees R S. 1995. A survey of clique and biclique coverings and factorizations of (0; 1)- matrices{J}. Bull.inst.combin.appl, 14.
[26]
Schmidt G. 2011. Relational mathematics{M}. Cambridge University Press.
[27]
Miettinen P. 2009. Matrix Decomposition Methods for Data Mining: Computational Complexity and Algorithms. Helsingin Yliopisto.
[28]
Miettinen P, Mielikäinen T, Gionis A, Das G. 2008. The discrete basis problem. IEEE Transactions on Knowledge and Data Engineering, 20(10): 1348--1362.
[29]
Drineas P, Kannan R, Mahoney M W. 2006. Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix. SIAM Journal on computing, 36(1): 158--183.
[30]
Drineas P, Mahoney M W, Muthukrishnan S. 2008. Relative-error CUR matrix decompositions. SIAM Journal on Matrix Analysis and Applications, 30(2): 844--881.
[31]
Belohlavek R, Trnecka M. 2013. From-below approximations in Boolean matrix factorization: Geometry and new algorithm{J}. Journal of Computer & System Sciences, 81(8):45--52.
[32]
Belohlavek R, Vychodil V. 2010. Discovery of optimal factors in binary data via a novel method of matrix decomposition{J}. Journal of Computer & System Sciences, 76(1):3--20.
[33]
Sun Y, Ye S, Sun Y, et al. 2015. Improved algorithms for exact and approximate boolean matrix decomposition. Data Science and Advanced Analytics (DSAA), IEEE, 2015: 1--10.
[34]
Cerri R, Barros R C, de Carvalho A C. 2012. A genetic algorithm for hierarchical multi-label classification. Proceedings of the 27th annual ACM symposium on applied computing. ACM; 2012: 250--255.
[35]
Otero F E B, Freitas A A, Johnson C G. 2010. A hierarchical multi-label classification ant colony algorithm for protein function prediction. Memetic Computing. 2(3): 165--181.
[36]
Schietgat L, Vens C, Struyf J, Blockeel H. 2010. Predicting gene function using hierarchical multi-label decision tree ensembles. BMC bioinformatics. 11(1): 2.
[37]
Stojanova D. 2013. Considering Autocorrelation in Predictive Models. Informatica (Slovenia). 37(1): 107--108.
[38]
Triguero I, Vens C. 2016. Labelling strategies for hierarchical multi-label classification techniques. Pattern Recognition 56(C):170--183.
[39]
Zhang M L, Zhou Z H. 2007. ML-KNN: A lazy learning approach to multi-label learning. Pattern recognition. 40(7): 2038--2048.

Cited By

View all
  • (2024)A Hybrid Principal Label Space Transformation-Based Binary Relevance Support Vector Machine and Q-Learning Algorithm for Multi-label ClassificationArabian Journal for Science and Engineering10.1007/s13369-024-09034-1Online publication date: 20-Apr-2024

Index Terms

  1. An Overview of Label Space Dimension Reduction for Multi-Label Classification

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICIIP '17: Proceedings of the 2nd International Conference on Intelligent Information Processing
    July 2017
    211 pages
    ISBN:9781450352871
    DOI:10.1145/3144789
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    In-Cooperation

    • Wanfang Data: Wanfang Data, Beijing, China
    • International Engineering and Technology Institute, Hong Kong: International Engineering and Technology Institute, Hong Kong

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 17 July 2017

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Label space dimension reduction
    2. Matrix decomposition
    3. Multi-label classification

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    IIP'17

    Acceptance Rates

    ICIIP '17 Paper Acceptance Rate 32 of 202 submissions, 16%;
    Overall Acceptance Rate 87 of 367 submissions, 24%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)8
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 21 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)A Hybrid Principal Label Space Transformation-Based Binary Relevance Support Vector Machine and Q-Learning Algorithm for Multi-label ClassificationArabian Journal for Science and Engineering10.1007/s13369-024-09034-1Online publication date: 20-Apr-2024

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media