Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Hybrid Principal Label Space Transformation-Based Binary Relevance Support Vector Machine and Q-Learning Algorithm for Multi-label Classification

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Classification is one of the most important Machine Learning processes, with numerous applications in a variety of fields. Data are associated with multiple labels in several applications, including text classification, image processing, gene analysis, etc. The problem of predicting the labels of data samples is called multi-label classification (MLC). An effective learning model is required to solve this problem. Recently, scholars have developed a variety of MLC models to solve the most challenging real-life MLC problems. In spite of this, the amount of data, the number of features, and the number of labels are increasing in the big data era, posing critical challenges to existing MLC models. An MLC model is presented to address these challenges and enhance existing models' precision. To encode the raw data in the proposed MLC model, the Principal Label Space Transformation algorithm is used. Using Binary Relevance Support Vector Machine, the initial label set is predicted. To improve initial predictions, a modified Q-Learning algorithm is developed. Using nine real-world datasets, the MLC is compared with seven Commonly used MLC models Considering EM, AP, Macro F1, Hamming Score and Micro F1. MLC model is superior to competitors based on experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sarker, I.H.: Machine learning: algorithms, real-world applications and research directions. SN Comput. Sci. 2(3), 160 (2021)

    Article  Google Scholar 

  2. Mahesh, B.: Machine learning algorithms-a review. Int. J. Sci. Res. (IJSR) 9(1), 381–386 (2020)

    Google Scholar 

  3. Amin, J., et al.: Brain tumor detection and classification using machine learning: a comprehensive survey. Complex Intell. Syst. 8(4), 3161–3183 (2022)

    Article  Google Scholar 

  4. Sen, P.C.; Hajra, M., Ghosh. M.: Supervised classification algorithms in machine learning: a survey and review. In: Emerging Technology in Modelling and Graphics: Proceedings of IEM Graph 2018. Springer (2020)

  5. Seyed Ebrahimi, S.H.; Majidzadeh, K.; Soleimanian Gharehchopogh, F.: A novel learning-based PLST algorithm for multi-label classification. IETE J. Res. 1–19 (2023)

  6. Xia, Y.; Chen, K.; Yang, Y.: Multi-label classification with weighted classifier selection and stacked ensemble. Inf. Sci. 557, 421–442 (2021)

    Article  MathSciNet  Google Scholar 

  7. Weng, W., et al.: Learning label-specific features with global and local label correlation for multi-label classification. Appl. Intell.Intell. 53(3), 3017–3033 (2023)

    Article  Google Scholar 

  8. Wu, G., et al.: Joint ranking SVM and binary relevance with robust low-rank learning for multi-label classification. Neural Netw.Netw. 122, 24–39 (2020)

    Article  Google Scholar 

  9. Wang, Z.-W., et al.: A novel multi-label classification algorithm based on K-nearest neighbor and random walk. Int. J. Distrib. Sens. Netw.Distrib. Sens. Netw. 16(3), 1550147720911892 (2020)

    Google Scholar 

  10. Yu, Z.-B.; Zhang, M.-L.: Multi-label classification with label-specific feature generation: a wrapped approach. IEEE Trans. Pattern Anal. Mach. Intell.Intell. 44, 5199–5210 (2021)

    Google Scholar 

  11. Guan, Y., et al.: Multi-label classification by formulating label-specific features from simultaneous instance level and feature level. Appl. Intell.Intell. 51, 3375–3390 (2021)

    Article  Google Scholar 

  12. Xu, Z.; Liu, Y.; Li, C.: Distributed information-theoretic semisupervised learning for multilabel classification. IEEE Trans. Cybern. 52(2), 821–835 (2020)

    Article  Google Scholar 

  13. Zhang, Q., et al.: Ensemble of kernel extreme learning machine based elimination optimization for multi-label classification. Knowl.-Based Syst..-Based Syst. 278, 110817 (2023)

    Article  Google Scholar 

  14. Du, J., et al.: ML-Net: multi-label classification of biomedical texts with deep neural networks. J. Am. Med. Inform. Assoc. 26(11), 1279–1285 (2019)

    Article  Google Scholar 

  15. Zhu, X., et al.: Dynamic ensemble learning for multi-label classification. Inf. Sci. 623, 94–111 (2023)

    Article  Google Scholar 

  16. Law, A.; Ghosh, A.: Multi-label classification using binary tree of classifiers. IEEE Trans. Emerg. Top. Comput. Intell. 6(3), 677–689 (2021)

    Article  Google Scholar 

  17. Li, J., et al.: Learning common and label-specific features for multi-Label classification with correlation information. Pattern Recogn.Recogn. 121, 108259 (2022)

    Article  Google Scholar 

  18. Zhang, M.-L.; Fang, J.-P.; Wang, Y.-B.: Bilabel-specific features for multi-label classification. ACM Trans. Knowl. Discov. Data (TKDD) 16(1), 1–23 (2021)

    Google Scholar 

  19. Masuyama, N., et al.: Multi-label classification via adaptive resonance theory-based clustering. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

  20. Tai, F.; Lin, H.-T.: Multilabel classification with principal label space transformation. Neural Comput.Comput. 24(9), 2508–2542 (2012)

    Article  MathSciNet  Google Scholar 

  21. Jitharn, K.; Pacharawongsakda, E.: Combining extreme multi-label classification and principal label space transformation for cold start thread recommendation. In: 2019 14th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP), IEEE (2019)

  22. Pisner, D.A.; Schnyer, D.M.: Support vector machine. In: Machine Learning. Elsevier, pp. 101–121 (2020)

  23. Yue, S.; Li, P.; Hao, P.: SVM classification: Its contents and challenges. Appl. Math.-A J. Chin. Univ. 18, 332–342 (2003)

    Article  MathSciNet  Google Scholar 

  24. Chandra, M.A.; Bedi, S.: Survey on SVM and their application in image classification. Int. J. Inf. Technol. 13, 1–11 (2021)

    Google Scholar 

  25. Wong, T.-T.; Yeh, P.-Y.: Reliable accuracy estimates from k-fold cross validation. IEEE Trans. Knowl. Data Eng.Knowl. Data Eng. 32(8), 1586–1594 (2019)

    Article  Google Scholar 

  26. Jung, Y.: Multiple predicting K-fold cross-validation for model selection. J. Nonparametric Stat. 30(1), 197–215 (2018)

    Article  MathSciNet  Google Scholar 

  27. Lin, Z., et al.: Multi-label classification via feature-aware implicit label space encoding. In: International Conference on Machine Learning. PMLR (2014)

  28. Tang, L.; Liu, L.; Gan. J.: An overview of label space dimension reduction for multi-label classification. In: Proceedings of the 2nd International Conference on Intelligent Information Processing (2017)

  29. Jang, B., et al.: Q-learning algorithms: a comprehensive classification and applications. IEEE Access 7, 133653–133667 (2019)

    Article  Google Scholar 

  30. Pourpanah, F., et al.: A Q-learning-based multi-agent system for data classification. Appl. Soft Comput.Comput. 52, 519–531 (2017)

    Article  Google Scholar 

  31. Clifton, J.; Laber, E.: Q-learning: theory and applications. Annu. Rev. Stat. Appl. 7, 279–301 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hossein Seyed Ebrahimi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, S.H.S. A Hybrid Principal Label Space Transformation-Based Binary Relevance Support Vector Machine and Q-Learning Algorithm for Multi-label Classification. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09034-1

Keywords

Navigation