Nothing Special   »   [go: up one dir, main page]

skip to main content
article
Free access

Reflectance and texture of real-world surfaces

Published: 01 January 1999 Publication History

Abstract

In this work, we investigate the visual appearance of real-world surfaces and the dependence of appearance on the geometry of imaging conditions. We discuss a new texture representation called the BTF (bidirectional texture function) which captures the variation in texture with illumination and viewing direction. We present a BTF database with image textures from over 60 different samples, each observed with over 200 different combinations of viewing and illumination directions. We describe the methods involved in collecting the database as well as the importqance and uniqueness of this database for computer graphics. A related quantity to the BTF is the familiar BRDF (bidirectional reflectance distribution function). The measurement methods involved in the BTF database are conducive to simultaneous measurement of the BRDF. Accordingly, we also present a BRDF database with reflectance measurements for over 60 different samples, each observed with over 200 different combinations of viewing and illumination directions. Both of these unique databases are publicly available and have important implications for computer graphics.

References

[1]
ASTM. Standard E1392-90, Standard practice for angle resolved optical scatter measurements on specular or diffuse surfaces. American Society for Testing and Materials.
[2]
BECKER, B. G. AND MAX, N. L. 1993. Smooth transitions between bump rendering algorithms. Comput. Graph. SIGGRAPH 93, 27, (Aug.), 183-190.
[3]
BETTY, C. L., FUNG, A. K., AND IRONS, J. 1996. The measured polarized bidirectional reflectance distribution function of a spectralon calibration target. In Proceedings of IGARSS '96, IEEE International Geoscience and Remote Sensing Symposium (Lincoln, NE, May 27-31) 2183-2185.
[4]
BLINN, g. F. 1977. Models of light reflection for computer synthesized pictures. Comput. Graph. SIGGRAPH 77, 11, (July), 192-198.
[5]
BLINN, J. F. 1978. Simulation of wrinkled surfaces. In Proceedings of SIGGRAPH 78, 286 -292.
[6]
BORN, M. AND WOLF, E. 1959. Principles of Optics, Pergamon, New York.
[7]
CHATTERJEE, S. 1993. Classification of natural textures using Gaussian Markov random fields. In Markov Random Fields: Theory and Applications, Academic Press, Boston, 159-177.
[8]
DANA, K. J. AND NAYAR, S.K. 1998. Histogram model for 3D textures. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Santa Barbara, CA, June 23-25), 618-624.
[9]
DANA, K. J., VAN GINNEKEN, B., NAYAR, S. K., AND KOENDERINK, J.J. 1996. Reflectance and texture of real-world surfaces. Columbia University, Tech. Rep. CUCS-048-96, Dec.
[10]
DANA, K. J., VAN GINNEKEN, B., NAYAR, S. K., AND KOENDERINK, J.J. 1997. Reflectance and texture of real world surfaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (San Juan, PR, June 17-19), 151-157.
[11]
DEBEVEC, P. E., TAYLOR, C. J., AND MALIK, J. 1996. Modeling and rendering architecture from photographs: A hybrid geometry and image-based approach. Comput. Graph. SIG- GRAPH 96 (Aug.), 11-20.
[12]
VAN GINNEKEN, B., KOENDERINK, J. J., AND DANA, K. J. 1997. Texture histograms as a function of irradiation and viewing direction. Int. J. Comput. Vis. (to appear).
[13]
VAN GINNEKEN, B., STAVRIDI, M., AND KOENDERINK, J.J. 1998. Diffuse and specular reflectance from rough surfaces. Appl. Opt. 37 (Jan.), 130-139.
[14]
GOURAUD, H.1971. Continuous shading of curves surfaces. IEEE Trans. Comput. (June), 623-629.
[15]
HECKBERT, P.S. 1986. A survey of texture mapping. IEEE Comput. Graph. Appl. 6 (Nov.), 56-67.
[16]
HERREN, K.A. 1989. Measurements of polarization scattering in the vacuum ultraviolet. In Polarization Considerations for Optical Systems II, Proceedings of the SPIE (San Diego, CA, Aug. 9-11), Vol. 1166, 33-41.
[17]
HOWARD, T. L., GEORGE, P. M., FLAMMANG, S., AND MOSSMAN, D. 1989. Vacuum BRDF measurements of cryogenic optical surfaces. In Scatter from Optical Components, Proceedings of the SPIE (San Diego, CA, Aug. 8-10), Vol. 1165, 350-359.
[18]
HORN, B. K. P. AND BROOKS, M.J. 1989. Shape from Shading. MIT Press, Cambridge, MA.
[19]
KARNER, K. F., MAYER, H., AND GERVAUTZ, M. 1996. An image based measurement system for anisotropic reflection. Comput. Graph. Forum (EUROGRAPHICS '96) 15, 3 (Aug.), 119-28.
[20]
KASHYAP, R.L. 1984. Characterization and estimation of two-dimensional ARMA models. IEEE Trans. Inf. Theor. IT-30, 5 (Sept.), 736-745.
[21]
KOENDERINK, J. J. AND VAN DOORN, A.J. 1996. Illuminance texture due to surface mesostructure. J. Opt. Soc. Am. A 13, 3, 452-463.
[22]
KOENDERINK, J. J., VAN DOORN, A. J., AND STAVRIDI, M. 1996. Bidirectional reflection distribution function expressed in terms of surface scattering modes. In Proceedings of the European Conference on Computer Vision, vol. 2, 28-39.
[23]
KOENDERINK, J. J., VAN DOORN, A. J., DANA, K. J., AND NAYAR, S. K. 1998. Bidirectional reflection distribution function of thoroughly pitted surfaces. Int. J. Comput. Vis. (to appear).
[24]
KRUMM, J. AND SHAFER, S.A. 1995. Texture segmentation and shape in the same image. In Proceedings of the IEEE Conference on Computer Vision (Cambridge, MA, June 20-23), 121-127.
[25]
LEUNG, T. AND MALIK, J. 1997. On perpendicular texture: Why do we see more flowers in the distance? In Proceedings of the IEEE Conference on CVPR (San Juan, PR, June 17-19), 807-813.
[26]
LEWIS, J. P. 1989. Algorithms for solid noise synthesis. Comput. Graph. 23, 3 (July), 263-270.
[27]
LI, Z., FUNG, A. K., GIBBS, D., BETTY, C. L., TJUATJA, S., AND IRONS, J.R. 1994. A modeling study of bidirectional reflectance from soil surfaces. In Proceedings of IGARSS '94, IEEE International Geoscience and Remote Sensing Symposium (Pasadena, CA, Aug. 8-12), 1835-1837.
[28]
MARX, E. AND VORBURGER, T. V. 1989. Light scattered by random rough surfaces and roughness determination. In Scatter from Optical Components, Proceedings of the SPIE (Aug.), Vol. 1,165, 72-86.
[29]
NAYAR, S. K. AND OREN, M. 1995. Visual appearance of matte surfaces. Science 267 (Feb.), 1153-1156.
[30]
NAYAR, S. K., IKEUCHI, K., AND KANADE, T. 1991. Surface reflection: Physical and geometrical perspectives. IEEE Trans. Patt. Anal. Mach. Intell. 13, 7 (July), 611-634.
[31]
NICODEMUS, F.E. 1970. Reflectance nomenclature and directional reflectance and emissivity. Appl. Opt. 9, 1474-1475.
[32]
NICODEMUS, F. E., RICHMON, J. C., HSIA, J. J., GINSBERG, I. W., AND LIMPERIS, T. 1977. Geometric considerations and nomenclature for reflectance. NBS Monograph 160, National Bureau of Standards, Washington, DC, Oct.
[33]
NOLIN, A. W., STEFFEN, K., AND DOZIER, J. 1994. Measurement and modeling of the bidirectional reflectance of snow. In Proceedings of IGARSS '94, IEEE International Geoscience and Remote Sensing Symposium (Pasadena, CA, Aug. 8-12), 1919-1921.
[34]
OREN, M. AND NAYAR, S.K. 1995. Generalization of the Lambertian model and implications for machine vision. Int. J. Comput. Vis. 14, 227-251.
[35]
PATEL, M. A. S. AND COHEN, F. S. 1992. Shape from texture using Markov random field models and stereo-windows. In Proceedings of the IEEE Conference on CVPR (Champaign, IL, June 15-18), 290-305.
[36]
PEACHEY, D. R. 1985. Solid texturing of complex surfaces. In Proceedings of SIGGRAPH 1985, Comput. Graph. 19, 279-286.
[37]
PERLIN, K. 1985. An image synthesizer. Comput. Graph. 19, 3 (July), 287-296.
[38]
PERLIN, K. 1989. Hypertexture. Comput. Graph. 23, 3 (July), 253-262.
[39]
PICARD, R. W., KABIR, T., AND LIU, F. 1993. Real-time recognition with the entire Brodatz texture database. In Proceedings of the IEEE Conference on CVPR (New York, NY, June 15-17), 638-639.
[40]
POULIN, P. AND FOURNIER, A. 1990. A model for anisotropic reflection. Comput. Graph. 24, 4 (Aug.), 273-282.
[41]
SAKAS, G. AND KERNKE, B. 1994. Texture shaping: A method for modeling arbitrarily shaped volume objects in texture space. In Photorealistic Rendering in Computer Graphics, Proceedings of the Second Eurographics Workshop on Rendering, Springer-Verlag, New York, 206-218.
[42]
SANDMEIER, S., SANDMEIER, W., ITTEN, K. I., SCHAEPMAN, M. E., AND KELLENBERGER, T. W. 1995. The Swiss field-goniometer system. In Proceedings of IGARSS '95, IEEE International Geoscience and Remote Sensing Symposium (July), 2078-2080.
[43]
SCHLUESSEL, D., DICKINSON, R. E., PRIVETTE, J. L., EMERY, W. J., AND KOKALY, R. 1994. Modeling the bidirectional reflectance distribution function of mixed finite plant canopies and soil. J. Geophys. Res. 99, D5 (May), 10577-600.
[44]
STAVRIDI, M., VAN GINNEKEN, B., AND KOENDERINK, J.J. 1997. Surface bidirectional reflection distribution function and the texture of bricks and tiles. Appl. Opt. 36, 16 (June), 3717-3725.
[45]
STOVER, J.C. 1989. Scatter from optical components: An overview. In Scatter from Optical Components, Proceedings of the SPIE (San Francisco, CA, Aug. 8-10), Vol. 1165, 2-9.
[46]
SUEN, P. AND HEALEY, G. 1998. Analyzing the bidirectional texture function. In Proceedings of the IEEE Conference on CVPR (San Diego, CA, June 23-25), 753-758.
[47]
SUPER, B. J. AND BOVIK, A.C. 1995. Shape from texture using local spectral moments. IEEE Trans. Patt. Anal. Mach. Intell. 17, 333-343.
[48]
TAGARE, H. D. AND DEFIGUEIREDO, R. J. P. 1993. A framework for the construction of reflectance maps for machine vision. CVGIP: Image Understand. 57, 3 (May), 265-282.
[49]
TORRANCE, K. E. AND SPARROW, E.M. 1967. Theory for off-specular reflection from roughened surfaces. J. Opt. Soc. Am. 57, 9, 1105-1114.
[50]
WANG, L. AND HEALEY, G. 1996. Illumination and geometry invariant recognition of texture in color images. In Proceedings of the IEEE Conference on CVPR (San Francisco, CA, June 18-20), 419-424.
[51]
WARD, G.J. 1992. Measuring and modeling anisotropic reflection. Comput. Graph. 26, 2, ACM SIGGRAPH (July), 265-272.
[52]
WESTIN, S. H., ARVO, J. R., AND TORRANCE, K.E. 1992. Predicting reflectance functions from complex surfaces. Comput. Graph. 26, 2, ACM SIGGRAPH (July), 255-263.
[53]
WOLFF, L. B. 1994. A diffuse reflectance model for smooth dielectrics. J. Opt. Soc. Am. A--Special Issue on Physics Based Machine Vision (Nov.), 2956-2968.
[54]
WOODHAM, R.J. 1980. Photometric methods for determining surface orientation from multiple images. Opt. Eng. 19, 1, 139-144.
[55]
XIE, Z. AND BRADY, M. 1996. Texture segmentation using local energy in wavelet scale space. ECCV 1, 304-313.

Cited By

View all
  • (2025)A robust image descriptor-local radial grouped invariant order patternInformation Sciences10.1016/j.ins.2024.121675693(121675)Online publication date: Mar-2025
  • (2024)Transferable Deep Learning Model for the Identification of Fish Species for Various Fishing GroundsJournal of Marine Science and Engineering10.3390/jmse1203041512:3(415)Online publication date: 26-Feb-2024
  • (2024)Optical and Electromechanical Design and Implementation of an Advanced Multispectral Device to Capture Material AppearanceJournal of Imaging10.3390/jimaging1003005510:3(55)Online publication date: 23-Feb-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 18, Issue 1
Jan. 1999
94 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/300776
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 January 1999
Published in TOG Volume 18, Issue 1

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)529
  • Downloads (Last 6 weeks)67
Reflects downloads up to 22 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2025)A robust image descriptor-local radial grouped invariant order patternInformation Sciences10.1016/j.ins.2024.121675693(121675)Online publication date: Mar-2025
  • (2024)Transferable Deep Learning Model for the Identification of Fish Species for Various Fishing GroundsJournal of Marine Science and Engineering10.3390/jmse1203041512:3(415)Online publication date: 26-Feb-2024
  • (2024)Optical and Electromechanical Design and Implementation of an Advanced Multispectral Device to Capture Material AppearanceJournal of Imaging10.3390/jimaging1003005510:3(55)Online publication date: 23-Feb-2024
  • (2024)Relationship between reflectance and degree of polarization in the VNIR-SWIR: A case study on art paintings with polarimetric reflectance imaging spectroscopyPLOS ONE10.1371/journal.pone.030301819:5(e0303018)Online publication date: 9-May-2024
  • (2024)Perceptual dimensions of wood materialsJournal of Vision10.1167/jov.24.5.1224:5(12)Online publication date: 24-May-2024
  • (2024)Peripheral material perceptionJournal of Vision10.1167/jov.24.4.1324:4(13)Online publication date: 16-Apr-2024
  • (2024)RNA: Relightable Neural AssetsACM Transactions on Graphics10.1145/369586644:1(1-19)Online publication date: 12-Sep-2024
  • (2024)Progressively Streamed Real-time Preview of Captured Optical Surface Materials on the WebProceedings of the 29th International ACM Conference on 3D Web Technology10.1145/3665318.3677157(1-10)Online publication date: 25-Sep-2024
  • (2024)Neural SSS: Lightweight Object Appearance RepresentationComputer Graphics Forum10.1111/cgf.1515843:4Online publication date: 24-Jul-2024
  • (2024)A Hierarchical Architecture for Neural MaterialsComputer Graphics Forum10.1111/cgf.1511643:6Online publication date: 15-May-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media