Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Diagnosability of Component-Composition Graphs in the MM* Model

Published: 23 June 2014 Publication History

Abstract

Diagnosability is an important metric for measuring the reliability of multiprocessor systems. This article adopts the MM* model and outlines the common properties of a wide class of interconnection networks, called component-composition graphs (CCGs), to determine their diagnosability by using their obtained properties. By applying the results to multiprocessor systems, the diagnosability of hypercube-like networks (including hypercubes, crossed cubes, Möbius cubes, twisted cubes, locally twisted cubes, generalized twisted cubes, and recursive circulants), star graphs, pancake graphs, bubble-sort graphs, and burnt pancake graphs, all of which belong to the class of CCGs, can also be computed.

References

[1]
S. B. Akers, D. Horel, and B. Krishnamurthy. 1987. The star graph: An attractive alternative to the n-cube. In Proceedings of the International Conference on Parallel Processing. 393--400.
[2]
S. B. Akers and B. Krishnamurthy. 1989. A group-theoretic model for symmetric interconnection networks. IEEE Trans. Comput. 38, 4, 555--566.
[3]
L. C. P. Albini, S. Chessa, and P. Maestrini. 2004. Diagnosis of symmetric graphs under the BGM model. Comput. J. 47, 1, 85--92.
[4]
T. Araki and Y. Shibata. 2003. (t, k)-diagnosable system: A generalization of the PMC models. IEEE Trans. Comput. 52, 7, 971--975.
[5]
J. R. Armstrong and F. G. Gray. 1981. Fault diagnosis in a boolean n cube array of multiprocessors. IEEE Trans. Comput. 30, 8, 587--590.
[6]
F. Barsi, F. Grandoni, and P. Maestrini. 1976. A theory of diagnosability of digital systems. IEEE Trans. Comput. C-25, 6, 585--593.
[7]
L. Bhuyan and D. P. Agrawal. 1984. Generalized hypercubes and hyperbus structure for a computer network. IEEE Trans. Comput. 33, 4, 323--333.
[8]
G. Y. Chang, G. J. Chang, and G. H. Chen. 2005. Diagnosabilities of regular networks. IEEE Trans. Parallel Distrib. Syst. 16, 4, 314--323.
[9]
G. Y. Chang, G. H. Chen, and G. J. Chang. 2006. (t, k)-diagnosis for matching composition networks. IEEE Trans. Comput. 55, 1, 88--92.
[10]
G. Y. Chang, G. H. Chen, and G. J. Chang. 2007. (t, k)-diagnosis for matching composition networks under the MM* model. IEEE Trans. Comput. 56, 1, 73--79.
[11]
F. B. Chedid. 1995. On the generalized twisted cube. Inf. Process. Lett. 55, 1, 49--52.
[12]
C. A. Chen and S. Y. Hsieh. 2011. (t, k)-diagnosis for component-composition graphs under the MM* model. IEEE Trans. Comput. 60, 12, 1704--1717.
[13]
K. Y. Chwa And L. Hakimi. 1981. On fault identification in diagnosable systems. IEEE Trans. Comput. 30, 6, 414--422.
[14]
P. Cull and S. M. Larson. 1995. The Mobius cubes. IEEE Trans. Comput. 44, 5, 647--659.
[15]
A. Das, K. Thulasiraman, and V. K. Agarwal. 1994. Diagnosis of t/(t + 1)-diagnosable systems. SIAM J. Comput. 23, 5, 895--905.
[16]
K. Efe. 1992. The crossed cube architechure for parallel computation. IEEE Trans. Parallel Distrib. Syst. 3, 5, 513--524.
[17]
J. Fan. 2002. Diagnosability of crossed cubes under the comparison diagnosis model. IEEE Trans. Parallel Distrib. Syst. 13, 7, 687--692.
[18]
P. A. J. Hilbers, M. R. J. Koopman, and J. L. J. Van De Snepscheut. 1987. The twisted cube. In Proceedings of the Conference on Parallel Architectures and Languages Europe: Parallel Architectures, Vol. 1. Lecture Notes in Computer Science, vol. 258, Springer, 152--159.
[19]
S. Y. Hsieh and C. A. Chen. 2010. Computing the (t, k)-diagnosability of component-composition graphs and its application. In Proceedings of 21st International Symposium on Algorithms and Computation (ISAAC'10). 363--374.
[20]
S. Y. Hsieh and Y. S. Chen. 2008a. Strongly diagnosable product networks under the comparison diagnosis model. IEEE Trans. Comput. 57, 6, 721--732.
[21]
S. Y. Hsieh and Y. S. Chen. 2008b. Strongly diagnosable systems under the comparison diagnosis model. IEEE Trans. Comput. 57, 12, 1720--1725.
[22]
S. Y. Hsieh and T. Y. Chuang. 2009. The strong diagnosability of regular networks and product networks under the PMC model. IEEE Trans. Parallel Distrib. Syst. 20, 3, 367--378.
[23]
K. Kaneko and N. Sawada. 2003. An algorithm for node-to-set disjoint paths problem in burnt pancake graphs. IEICE Trans. Inf. Syst. E86-D, 12, 2588--2594.
[24]
P. L. Lai, J. J. M. Tan, C. H. Tsai, and L. H. Hsu. 2004. Diagnosability of the matching composition network under the comparison diagnosis model. IEEE Trans. Comput. 53, 8, 1064--1069.
[25]
C. W. Lee and S. Y. Hsieh. 2011a. Determining the diagnosability of (1,2)-matching composition networks and its applications. IEEE Trans. Depend. Secur. Comput. 8, 3, 353--362.
[26]
C. W. Lee and S. Y. Hsieh. 2011b. Diagnosability of two-matching composition networks under the MM* model. IEEE Trans. Depend. Secur. Comput. 8, 2, 246--255.
[27]
C. W. Lee and S. Y. Hsieh. 2013. Diagnosabiltiy of multiprocessor systems. InScalable Computing and Communications: Theory and Practice. Wiley.
[28]
J. K. Lee and J. T. Butler. 1990. A characterization of t/s-diagnosability and sequential t-diagnosability in designs. IEEE Trans. Comput. 39, 10, 1298--1304.
[29]
F. T. Leighton. 1992. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Fransisco.
[30]
J. Maeng and M. Malek. 1981. A comparison connection assignment for self-diagnosis of multiprocessor systems. In Proceedings of 11th International Symposium on Fault-Tolerant Computing. 173--175.
[31]
J. H. Park and K. Y. Chwa. 2000. Recursive circulants and their embeddings among hypercubes. Theor. Comput. Sci. 244, 35--62.
[32]
J. H. Park, H. S. Lim, and H. C. Kim. 2007. Panconnectivity and pancyclicity of hypercube-like interconnection networks with faulty elements. Theor. Comput. Sci. 377, 170--180.
[33]
F. P. Preparata, G. Metze, and R. T. Chien. 1967. On the connection assignment problem of diagnosable systems. IEEE Trans. Electron. Comput. EC-16, 448--454.
[34]
A. Sengupta and A. Dahbura. 1992. On self-diagnosable multiprocessor system: Diagnosis by the comparison approach. IEEE Trans. Comput. 41, 11, 1386--1396.
[35]
A. S. Vaidya, P. S. N. Rao, and S. R. Shankar. 1993. A class of hypercube-like networks. In Proceedings of the 5th Symposium on Parallel and Distributed Processing. 800--803.
[36]
D. Wang. 1999. Diagnosability of hypercubes and enhanced hypercubes under the comparison diagnosis model. IEEE Trans. Comput. 48, 12, 1369--1374.
[37]
M. Xu and J. Jing. 2012. The connectivity and super connectivity of bubble-sort graph. Acta Mathematicae Sinica 35, 5, 789--794.
[38]
X. Yang, D. J. Evans, and G. M. Megson. 2005. The locally twisted cubes. Int. J. Comput. Math. 82, 4, 401--413.
[39]
J. Zheng, S. Latifi, E. Regentova, K. Luo, and X. Wu. 2005. Diagnosability of star graphs under the comparison diagnosis model. Inform. Process. Lett. 93, 29--36.

Cited By

View all
  • (2023)Mapping Outputs and States Encoding Bits to Outputs Using Multiplexers in Finite State Machine ImplementationsElectronics10.3390/electronics1203050212:3(502)Online publication date: 18-Jan-2023
  • (2020)The Diagnosability of Wheel Networks with Missing Edges under the Comparison ModelMathematics10.3390/math81018188:10(1818)Online publication date: 16-Oct-2020
  • (2019)Hybrid fault diagnosis capability analysis of hypercubes under the PMC model and MM⁎ modelTheoretical Computer Science10.1016/j.tcs.2018.07.019758(1-8)Online publication date: Feb-2019
  • Show More Cited By

Index Terms

  1. Diagnosability of Component-Composition Graphs in the MM* Model

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image ACM Transactions on Design Automation of Electronic Systems
        ACM Transactions on Design Automation of Electronic Systems  Volume 19, Issue 3
        June 2014
        257 pages
        ISSN:1084-4309
        EISSN:1557-7309
        DOI:10.1145/2634048
        Issue’s Table of Contents
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Journal Family

        Publication History

        Published: 23 June 2014
        Accepted: 01 February 2014
        Revised: 01 October 2013
        Received: 01 May 2013
        Published in TODAES Volume 19, Issue 3

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. Comparison diagnosis model
        2. MM* model
        3. component-composition graphs
        4. diagnosability
        5. graph theory
        6. multiprocessor systems

        Qualifiers

        • Research-article
        • Research
        • Refereed

        Funding Sources

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)2
        • Downloads (Last 6 weeks)1
        Reflects downloads up to 21 Nov 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2023)Mapping Outputs and States Encoding Bits to Outputs Using Multiplexers in Finite State Machine ImplementationsElectronics10.3390/electronics1203050212:3(502)Online publication date: 18-Jan-2023
        • (2020)The Diagnosability of Wheel Networks with Missing Edges under the Comparison ModelMathematics10.3390/math81018188:10(1818)Online publication date: 16-Oct-2020
        • (2019)Hybrid fault diagnosis capability analysis of hypercubes under the PMC model and MM⁎ modelTheoretical Computer Science10.1016/j.tcs.2018.07.019758(1-8)Online publication date: Feb-2019
        • (2016)The Extra, Restricted Connectivity and Conditional Diagnosability of Split-Star NetworksIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2015.240045927:2(533-545)Online publication date: 1-Feb-2016
        • (2015)Conditional diagnosability and strong diagnosability of Split-Star Networks under the PMC modelTheoretical Computer Science10.1016/j.tcs.2014.10.046562:C(565-580)Online publication date: 11-Jan-2015

        View Options

        Login options

        Full Access

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media