Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2666310.2666402acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Index-supported pattern matching on symbolic trajectories

Published: 04 November 2014 Publication History

Abstract

Recording mobility data with GPS-enabled devices, e.g., smart phones or vehicles, has become a common issue for private persons, companies, and institutions. Consequently, the requirements for managing these enormous datasets have increased drastically, so trajectory management has become an active research field. In order to avoid querying raw trajectories, which is neither convenient nor efficient, a symbolic representation of the geometric data has been introduced.
A comprehensive framework for describing and querying symbolic trajectories including an expressive pattern language as well as an efficient matching algorithm was presented lately. A symbolic trajectory, basically being a time-dependent symbolic value (e.g., a label), can contain names of traversed roads, a speed profile, transportation modes, behaviors of animals, or cells inside a cellular network. The quality and efficiency of transportation systems, targeted advertising, animal research, crime investigation, etc. may be improved by analyzing such data.
The main contribution of this paper is an improvement of our previous approach, featuring algorithms and data structures optimizing the matching of symbolic trajectories for any kind of pattern with the help of two indexes. More specifically, a trie is applied for the symbolic values (i.e., labels or places), while the time intervals are stored in a one-dimensional R-tree. Hence, we avoid the linear scan of every trajectory, being necessary without index support. As a result, the computation cost for the pattern matching is nearly independent from the trajectory size. Our work details the concept and the implementation of the new approach, followed by an experimental evaluation.

References

[1]
G. L. Andrienko, N. V. Andrienko, and M. Heurich. An event-based conceptual model for context-aware movement analysis. International Journal of Geographical Information Science, 25(9):1347--1370, 2011.
[2]
J.-W. Chang, M.-S. Song, and J.-H. Um. Tmn-tree: New trajectory index structure for moving objects in spatial networks. In CIT, pages 1633--1638, 2010.
[3]
V. T. de Almeida, R. H. Güting, and T. Behr. Querying moving objects in Secondo. In MDM, pages 47--51, 2006.
[4]
R. De La Briandais. File searching using variable length keys. In Papers Presented at the the March 3--5, 1959, Western Joint Computer Conference, IRE-AIEE-ACM '59 (Western), pages 295--298, 1959.
[5]
C. du Mouza and P. Rigaux. Multi-scale classification of moving objects trajectories. In Proc. of the 16th Conference on SSDBM, pages 307--316, 2004.
[6]
C. du Mouza and P. Rigaux. Mobility patterns. GeoInformatica, 9(4):297--319, 2005.
[7]
C. Düntgen, T. Behr, and R. H. Güting. BerlinMOD: a benchmark for moving object databases. VLDB J., 18(6):1335--1368, 2009.
[8]
R. H. Güting, T. Behr, and C. Düntgen. Secondo: A platform for moving objects database research and for publishing and integrating research implementations. IEEE Data Eng. Bull., 33(2):56--63, 2010.
[9]
R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider, and M. Vazirgiannis. A foundation for representing and querying moving objects. ACM Trans. Database Syst., 25(1):1--42, 2000.
[10]
R. H. Güting and M. Schneider. Moving Objects Databases. Morgan Kaufmann, 2005.
[11]
R. H. Güting, F. Valdés, and M. L. Damiani. Symbolic trajectories. FernUniversität in Hagen, Technical Report 369, 2013. http://dna.fernuni-hagen.de/papers/SymbolicTrajectories369.pdf.
[12]
A. Guttman. R-trees: A dynamic index structure for spatial searching, volume 14. ACM, 1984.
[13]
J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory, languages, and computation - (2. ed.). Addison-Wesley series in computer science. Addison-Wesley-Longman, 2001.
[14]
J. Lu and R. H. Güting. Parallel Secondo: Boosting database engines with hadoop. In ICPADS, pages 738--743, 2012.
[15]
J. Lu and R. H. Güting. Parallel Secondo: Practical and efficient mobility data processing in the cloud. In BigData Conference, pages 17--25, 2013.
[16]
G. Navarro and M. Raffinot. Flexible pattern matching in strings - practical on-line search algorithms for texts and biological sequences. Cambridge University Press, 2002.
[17]
C. Parent, S. Spaccapietra, C. Renso, G. L. Andrienko, N. V. Andrienko, V. Bogorny, M. L. Damiani, A. Gkoulalas-Divanis, J. A. F. de Macêdo, N. Pelekis, Y. Theodoridis, and Z. Yan. Semantic trajectories modeling and analysis. ACM Comput. Surv., 45(4):42, 2013.
[18]
N. Pelekis and Y. Theodoridis. Mobility Data Management and Exploration. Springer, 2014.
[19]
D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches in query processing for moving object trajectories. In VLDB, pages 395--406, 2000.
[20]
S. Spaccapietra, C. Parent, M. L. Damiani, J. A. F. de Macêdo, F. Porto, and C. Vangenot. A conceptual view on trajectories. Data Knowl. Eng., 65(1):126--146, 2008.
[21]
F. Valdés, M. L. Damiani, and R. H. Güting. Symbolic trajectories in Secondo: Pattern matching and rewriting. In DASFAA (2), pages 450--453, 2013.
[22]
M. Vazirgiannis, Y. Theodoridis, and T. K. Sellis. Spatio-temporal composition and indexing for large multimedia applications. Multimedia Syst., 6(4):284--298, 1998.
[23]
M. R. Vieira, P. Bakalov, and V. J. Tsotras. Querying trajectories using flexible patterns. In Proc. of the Conference on EDBT, pages 406--417, 2010.
[24]
M. R. Vieira, P. Bakalov, and V. J. Tsotras. Flextrack: A system for querying flexible patterns in trajectory databases. In 12th International Symposium, SSTD, pages 475--480, 2011.
[25]
M. R. Vieira and V. J. Tsotras. Complex motion pattern queries for trajectories. In ICDE Workshops, pages 280--283, Hannover, Germany, 2011.
[26]
M. Vlachos, D. Gunopulos, and G. Kollios. Discovering similar multidimensional trajectories. In ICDE, pages 673--684, 2002.
[27]
Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer. Semantic trajectories: Mobility data computation and annotation. ACM TIST, 4(3):49, 2013.
[28]
C. Zhang, J. Han, L. Shou, J. Lu, and T. F. L. Porta. Splitter: Mining fine-grained sequential patterns in semantic trajectories. PVLDB, 7(9):769--780, 2014.
[29]
Y. Zheng and X. Zhou, editors. Computing with Spatial Trajectories. Springer, 2011.

Cited By

View all
  • (2022)Social Spatio-temporal Keyword Pattern (S²KP) Queries in Multiple Aspect Trajectories DatabasesProceedings of the 34th International Conference on Scientific and Statistical Database Management10.1145/3538712.3538716(1-12)Online publication date: 6-Jul-2022
  • (2022)MFPMiner: Mining Meaningful Frequent Patterns from Spatio-textual TrajectoriesACM Transactions on Spatial Algorithms and Systems10.1145/34987288:1(1-30)Online publication date: 9-Mar-2022
  • (2021)Index-Accelerated Pattern Matching in Event StoresProceedings of the 2021 International Conference on Management of Data10.1145/3448016.3457245(1023-1036)Online publication date: 9-Jun-2021
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGSPATIAL '14: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
November 2014
651 pages
ISBN:9781450331319
DOI:10.1145/2666310
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 04 November 2014

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. R-tree
  2. pattern matching
  3. symbolic trajectories
  4. trie

Qualifiers

  • Research-article

Conference

SIGSPATIAL '14
Sponsor:
  • University of North Texas
  • Microsoft
  • ORACLE
  • Facebook
  • SIGSPATIAL

Acceptance Rates

SIGSPATIAL '14 Paper Acceptance Rate 39 of 184 submissions, 21%;
Overall Acceptance Rate 257 of 1,238 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)2
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Social Spatio-temporal Keyword Pattern (S²KP) Queries in Multiple Aspect Trajectories DatabasesProceedings of the 34th International Conference on Scientific and Statistical Database Management10.1145/3538712.3538716(1-12)Online publication date: 6-Jul-2022
  • (2022)MFPMiner: Mining Meaningful Frequent Patterns from Spatio-textual TrajectoriesACM Transactions on Spatial Algorithms and Systems10.1145/34987288:1(1-30)Online publication date: 9-Mar-2022
  • (2021)Index-Accelerated Pattern Matching in Event StoresProceedings of the 2021 International Conference on Management of Data10.1145/3448016.3457245(1023-1036)Online publication date: 9-Jun-2021
  • (2020)Semi-supervised Trajectory Understanding with POI Attention for End-to-End Trip RecommendationACM Transactions on Spatial Algorithms and Systems10.1145/33788906:2(1-25)Online publication date: 7-Feb-2020
  • (2020)Multi-attribute Trajectory Data ManagementHandbook of Big Geospatial Data10.1007/978-3-030-55462-0_9(199-240)Online publication date: 17-Dec-2020
  • (2019)Moving Objects with Transportation Modes: A SurveyJournal of Computer Science and Technology10.1007/s11390-019-1938-434:4(709-726)Online publication date: 19-Jul-2019
  • (2019)Trajectory splicingKnowledge and Information Systems10.1007/s10115-019-01382-xOnline publication date: 18-Jul-2019
  • (2018)A framework for efficient multi-attribute movement data analysisThe VLDB Journal10.1007/s00778-018-0525-6Online publication date: 31-Oct-2018
  • (2017)Efficient Multi-Attribute Analysis for TrajectoriesProceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems10.1145/3139958.3139977(1-4)Online publication date: 7-Nov-2017
  • (2017)Index-supported pattern matching on tuples of time-dependent valuesGeoinformatica10.1007/s10707-016-0286-621:3(429-458)Online publication date: 1-Jul-2017
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media